Skip to main content

Molecular Imaging of Diffuse Low Grade Glioma

  • Chapter
  • First Online:
Diffuse Low-Grade Gliomas in Adults

Abstract

Beyond defining tumor extent and anatomic location, recent advances in MRI and PET allow for the non-invasive physiologic, metabolic and molecular imaging of diffuse low-grade glioma. How this information can be best combined with detailed molecular characterization of tumors, in order to produce applicable markers of prognosis and response to therapy, remains to be determined. The impact on imaging of molecular features of gliomas including 1p/19q loss of heterozygosity (LOH) and the IDH1 and IDH2 mutations is discussed. Newer MR sequences and data mining techniques including diffusion and perfusion MRI and textural analysis may better stratify tumor prognosis and grade. Additionally, measurement of the oncometabolite 2-HG with MR spectroscopy appears clinically feasible, although the relationship to outcomes is yet to be determined. Lastly PET with amino acid tracers including C11-MET, FET and FDOPA provide additional avenues of tumor characterization that are unfettered by the high background uptake of FDG. The future may be characterized by gains in predictive, rather than merely prognostic markers, that could help optimize patient outcomes. As more targeted therapies become available, it will also be critical to develop early response indicators that are acquired prior to change in tumor size. To date, many imaging biomarkers lack the rigorous validation necessary for clinical decision-making, but ongoing efforts could yield such data in the near future. As more is understood about the relationship between imaging and underlying molecular features of disease, we can continue to refine treatment strategies in a manner more precisely tailored to individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cancer Genome Atlas Research N, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98.

    Article  CAS  Google Scholar 

  2. Castillo M. History and evolution of brain tumor imaging: insights through radiology. Radiology. 2014;273(2 Suppl):S111–25.

    Article  PubMed  Google Scholar 

  3. Galldiks N, Langen KJ, Pope WB. From the clinician's point of view – what is the status quo of positron emission tomography in patients with brain tumors? Neuro-Oncology. 2015;17(11):1434–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smits M. Imaging of oligodendroglioma. Br J Radiol. 2016;89(1060):20150857.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med. 1998;39(5):778–85.

    CAS  PubMed  Google Scholar 

  6. Aldape K, Burger PC, Perry A. Clinicopathologic aspects of 1p/19q loss and the diagnosis of oligodendroglioma. Arch Pathol Lab Med. 2007;131(2):242–51.

    CAS  PubMed  Google Scholar 

  7. Walker C, Haylock B, Husband D, Joyce KA, Fildes D, Jenkinson MD, et al. Clinical use of genotype to predict chemosensitivity in oligodendroglial tumors. Neurology. 2006;66(11):1661–7.

    Article  CAS  PubMed  Google Scholar 

  8. van den Bent MJ, Taphoorn MJ, Brandes AA, Menten J, Stupp R, Frenay M, et al. Phase II study of first-line chemotherapy with temozolomide in recurrent oligodendroglial tumors: the European Organization for Research and Treatment of Cancer Brain Tumor Group Study 26971. J Clin Oncol. 2003;21(13):2525–8.

    Article  PubMed  CAS  Google Scholar 

  9. Lin AL, Liu J, Evans J, Leuthardt EC, Rich KM, Dacey RG, et al. Codeletions at 1p and 19q predict a lower risk of pseudoprogression in oligodendrogliomas and mixed oligoastrocytomas. Neuro-Oncology. 2014;16(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao J, Ma W, Zhao H. Loss of heterozygosity 1p/19q and survival in glioma: a meta-analysis. Neuro-Oncology. 2014;16(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  11. Megyesi JF, Kachur E, Lee DH, Zlatescu MC, Betensky RA, Forsyth PA, et al. Imaging correlates of molecular signatures in oligodendrogliomas. Clin Cancer Res. 2004;10(13):4303–6.

    Article  PubMed  Google Scholar 

  12. Jenkinson MD, du Plessis DG, Smith TS, Joyce KA, Warnke PC, Walker C. Histological growth patterns and genotype in oligodendroglial tumours: correlation with MRI features. Brain. 2006;129(Pt 7):1884–91.

    Article  PubMed  Google Scholar 

  13. Chawla S, Krejza J, Vossough A, Zhang Y, Kapoor GS, Wang S, et al. Differentiation between oligodendroglioma genotypes using dynamic susceptibility contrast perfusion-weighted imaging and proton MR spectroscopy. AJNR Am J Neuroradiol. 2013;34(8):1542–9.

    Article  CAS  PubMed  Google Scholar 

  14. Saito T, Muragaki Y, Maruyama T, Komori T, Tamura M, Nitta M, et al. Calcification on CT is a simple and valuable preoperative indicator of 1p/19q loss of heterozygosity in supratentorial brain tumors that are suspected grade II and III gliomas. Brain Tumor Pathol. 2016;33(3):175–82.

    Article  CAS  PubMed  Google Scholar 

  15. Reyes-Botero G, Dehais C, Idbaih A, Martin-Duverneuil N, Lahutte M, Carpentier C, et al. Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instability, and angiogenic gene expression. Neuro-Oncology. 2014;16(5):662–70.

    Article  CAS  PubMed  Google Scholar 

  16. Kassner A, Thornhill RE. Texture analysis: a review of neurologic MR imaging applications. AJNR Am J Neuroradiol. 2010;31(5):809–16.

    Article  CAS  PubMed  Google Scholar 

  17. Brown R, Zlatescu M, Sijben A, Roldan G, Easaw J, Forsyth P, et al. The use of magnetic resonance imaging to noninvasively detect genetic signatures in oligodendroglioma. Clin Cancer Res. 2008;14(8):2357–62.

    Article  CAS  PubMed  Google Scholar 

  18. Harris RJ, Cloughesy TF, Liau LM, Prins RM, Antonios JP, Li D, et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro-Oncology. 2015;17(11):1514–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawai N, Lin W, Cao WD, Ogawa D, Miyake K, Haba R, et al. Correlation between (1, 8)F-fluoromisonidazole PET and expression of HIF-1alpha and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging. 2014;41(10):1870–8.

    Article  CAS  PubMed  Google Scholar 

  20. Bell C, Dowson N, Fay M, Thomas P, Puttick S, Gal Y, et al. Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET: toward clinical translation. Semin Nucl Med. 2015;45(2):136–50.

    Article  PubMed  Google Scholar 

  21. Chaumeil MM, Radoul M, Najac C, Eriksson P, Viswanath P, Blough MD, et al. Hyperpolarized (13) C MR imaging detects no lactate production in mutant IDH1 gliomas: implications for diagnosis and response monitoring. Neuroimage Clin. 2016;12:180–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Essig M, Nguyen TB, Shiroishi MS, Saake M, Provenzale JM, Enterline DS, et al. Perfusion MRI: the five most frequently asked clinical questions. AJR Am J Roentgenol. 2013;201(3):W495–510.

    Article  PubMed  Google Scholar 

  23. Schmainda KM. Diffusion-weighted MRI as a biomarker for treatment response in glioma. CNS Oncol. 2012;1(2):169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jenkinson MD, Smith TS, Joyce KA, Fildes D, Broome J, du Plessis DG, et al. Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours. Neuroradiology. 2006;48(10):703–13.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Whitmore RG, Krejza J, Kapoor GS, Huse J, Woo JH, Bloom S, et al. Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging. J Neurosurg. 2007;107(3):600–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kapoor GS, Gocke TA, Chawla S, Whitmore RG, Nabavizadeh A, Krejza J, et al. Magnetic resonance perfusion-weighted imaging defines angiogenic subtypes of oligodendroglioma according to 1p19q and EGFR status. J Neuro-Oncol. 2009;92(3):373–86.

    Article  Google Scholar 

  27. Fellah S, Caudal D, De Paula AM, Dory-Lautrec P, Figarella-Branger D, Chinot O, et al. Multimodal MR imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis? AJNR Am J Neuroradiol. 2013;34(7):1326–33.

    Article  CAS  PubMed  Google Scholar 

  28. Emblem KE, Scheie D, Due-Tonnessen P, Nedregaard B, Nome T, Hald JK, et al. Histogram analysis of MR imaging-derived cerebral blood volume maps: combined glioma grading and identification of low-grade oligodendroglial subtypes. AJNR Am J Neuroradiol. 2008;29(9):1664–70.

    Article  CAS  PubMed  Google Scholar 

  29. Jenkinson MD, Smith TS, Brodbelt AR, Joyce KA, Warnke PC, Walker C. Apparent diffusion coefficients in oligodendroglial tumors characterized by genotype. J Magn Reson Imaging. 2007;26(6):1405–12.

    Article  PubMed  Google Scholar 

  30. Gupta RK, Cloughesy TF, Sinha U, Garakian J, Lazareff J, Rubino G, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neuro-Oncol. 2000;50(3):215–26.

    Article  CAS  Google Scholar 

  31. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Metellus P, Coulibaly B, Colin C, de Paula AM, Vasiljevic A, Taieb D, et al. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol. 2010;120(6):719–29.

    Article  PubMed  Google Scholar 

  33. Qi S, Yu L, Li H, Ou Y, Qiu X, Ding Y, et al. Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms. Oncol Lett. 2014;7(6):1895–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lasocki A, Tsui A, Tacey MA, Drummond KJ, Field KM, Gaillard F. MRI grading versus histology: predicting survival of World Health Organization grade II-IV astrocytomas. AJNR Am J Neuroradiol. 2015;36(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  35. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF. MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol. 2005;26(10):2466–74.

    PubMed  Google Scholar 

  36. Zetterling M, Roodakker KR, Berntsson SG, Edqvist PH, Latini F, Landtblom AM, et al. Extension of diffuse low-grade gliomas beyond radiological borders as shown by the coregistration of histopathological and magnetic resonance imaging data. J Neurosurg. 2016;125(5):1155–66.

    Google Scholar 

  37. Pallud J, Varlet P, Devaux B, Geha S, Badoual M, Deroulers C, et al. Diffuse low-grade oligodendrogliomas extend beyond MRI-defined abnormalities. Neurology. 2010;74(21):1724–31.

    Article  CAS  PubMed  Google Scholar 

  38. Wasserman JK, Nicholas G, Yaworski R, Wasserman AM, Woulfe JM, Jansen GH, et al. Radiological and pathological features associated with IDH1-R132H mutation status and early mortality in newly diagnosed anaplastic astrocytic tumours. PLoS One. 2015;10(4):e0123890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang Y, Zhang T, Li S, Fan X, Ma J, Wang L, et al. Anatomical localization of isocitrate dehydrogenase 1 mutation: a voxel-based radiographic study of 146 low-grade gliomas. Eur J Neurol. 2015;22(2):348–54.

    Article  CAS  PubMed  Google Scholar 

  40. Zlatescu MC, Tehrani Yazdi A, Sasaki H, Megyesi JF, Betensky RA, Louis DN, et al. Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. Cancer Res. 2001;61(18):6713–5.

    CAS  PubMed  Google Scholar 

  41. Laigle-Donadey F, Martin-Duverneuil N, Lejeune J, Criniere E, Capelle L, Duffau H, et al. Correlations between molecular profile and radiologic pattern in oligodendroglial tumors. Neurology. 2004;63(12):2360–2.

    Article  CAS  PubMed  Google Scholar 

  42. Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet. 2012;205(12):613–21.

    Article  CAS  PubMed  Google Scholar 

  43. Goze C, Bezzina C, Goze E, Rigau V, Maudelonde T, Bauchet L, et al. 1P19Q loss but not IDH1 mutations influences WHO grade II gliomas spontaneous growth. J Neuro-Oncol. 2012;108(1):69–75.

    Article  Google Scholar 

  44. Tang C, Zhang ZY, Chen LC, Sun Z, Zhang Y, Qin Z, et al. Subgroup characteristics of insular low-grade glioma based on clinical and molecular analysis of 42 cases. J Neuro-Oncol. 2016;126(3):499–507.

    Article  CAS  Google Scholar 

  45. Duffau H, Capelle L. Preferential brain locations of low-grade gliomas. Cancer. 2004;100(12):2622–6.

    Article  PubMed  Google Scholar 

  46. Lee S, Choi SH, Ryoo I, Yoon TJ, Kim TM, Lee SH, et al. Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histogram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imaging. J Neuro-Oncol. 2015;121(1):141–50.

    Article  CAS  Google Scholar 

  47. Kickingereder P, Sahm F, Radbruch A, Wick W, Heiland S, Deimling A, et al. IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep. 2015;5:16238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tan W, Xiong J, Huang W, Wu J, Zhan S, Geng D. Noninvasively detecting isocitrate dehydrogenase 1 gene status in astrocytoma by dynamic susceptibility contrast MRI. J Magn Reson Imaging. 2016;45(2):492–9.

    Article  PubMed  Google Scholar 

  49. Xiong J, Tan WL, Wen JB, Pan JW, Wang Y, Zhang J, et al. Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours. Eur Radiol. 2016;26(6):1705–15.

    Article  PubMed  Google Scholar 

  50. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lai A, Kharbanda S, Pope WB, Tran A, Solis OE, Peale F, et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol. 2011;29(34):4482–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neuro-Oncol. 2012;107(1):197–205.

    Article  CAS  Google Scholar 

  53. Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, et al. 2-Hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18(4):624–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR, et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med. 2012;4(116):116ra4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Elkhaled A, Jalbert LE, Phillips JJ, Yoshihara HA, Parvataneni R, Srinivasan R, et al. Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci Transl Med. 2012;4(116):116ra5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kalinina J, Carroll A, Wang L, Yu Q, Mancheno DE, Wu S, et al. Detection of “oncometabolite” 2-hydroxyglutarate by magnetic resonance analysis as a biomarker of IDH1/2 mutations in glioma. J Mol Med (Berl). 2012;90(10):1161–71.

    Article  CAS  Google Scholar 

  57. Lazovic J, Soto H, Piccioni D, Lou JR, Li S, Mirsadraei L, et al. Detection of 2-hydroxyglutaric acid in vivo by proton magnetic resonance spectroscopy in U87 glioma cells overexpressing isocitrate dehydrogenase-1 mutation. Neuro-Oncology. 2012;14(12):1465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. de la Fuente MI, Young RJ, Rubel J, Rosenblum M, Tisnado J, Briggs S, et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro-Oncology. 2016;18(2):283–90.

    Article  PubMed  Google Scholar 

  59. Emir UE, Larkin SJ, de Pennington N, Voets N, Plaha P, Stacey R, et al. Noninvasive quantification of 2-hydroxyglutarate in human gliomas with IDH1 and IDH2 mutations. Cancer Res. 2016;76(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ganji SK, An Z, Tiwari V, McNeil S, Pinho MC, Pan E, et al. In vivo detection of 2-hydroxyglutarate in brain tumors by optimized point-resolved spectroscopy (PRESS) at 7T. Magn Reson Med. 2016;77(3):936–44.

    Article  PubMed  CAS  Google Scholar 

  61. Nagashima H, Tanaka K, Sasayama T, Irino Y, Sato N, Takeuchi Y, et al. Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance spectroscopy for IDH1 mutant glioma. Neuro-Oncology. 2016;18(11):1559–68.

    PubMed  Google Scholar 

  62. Andronesi OC, Loebel F, Bogner W, Marjanska M, Vander Heiden MG, Iafrate AJ, et al. Treatment response assessment in IDH-mutant glioma patients by noninvasive 3D functional spectroscopic mapping of 2-hydroxyglutarate. Clin Cancer Res. 2016;22(7):1632–41.

    Article  CAS  PubMed  Google Scholar 

  63. Natsumeda M, Igarashi H, Nomura T, Ogura R, Tsukamoto Y, Kobayashi T, et al. Accumulation of 2-hydroxyglutarate in gliomas correlates with survival: a study by 3.0-tesla magnetic resonance spectroscopy. Acta Neuropathol Commun. 2014;2:158.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schafer ML, Maurer MH, Synowitz M, Wustefeld J, Marnitz T, Streitparth F, et al. Low-grade (WHO II) and anaplastic (WHO III) gliomas: differences in morphology and MRI signal intensities. Eur Radiol. 2013;23(10):2846–53.

    Article  PubMed  Google Scholar 

  65. Arevalo-Perez J, Kebede AA, Peck KK, Diamond E, Holodny AI, Rosenblum M, et al. Dynamic contrast-enhanced MRI in low-grade versus anaplastic oligodendrogliomas. J Neuroimaging. 2016;26(3):366–71.

    Article  PubMed  Google Scholar 

  66. Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh GR, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol. 2004;25(2):214–21.

    PubMed  Google Scholar 

  67. Falk A, Fahlstrom M, Rostrup E, Berntsson S, Zetterling M, Morell A, et al. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging: a histogram analysis approach. Neuroradiology. 2014;56(12):1031–8.

    Article  PubMed  Google Scholar 

  68. Nguyen TB, Cron GO, Mercier JF, Foottit C, Torres CH, Chakraborty S, et al. Diagnostic accuracy of dynamic contrast-enhanced MR imaging using a phase-derived vascular input function in the preoperative grading of gliomas. AJNR Am J Neuroradiol. 2012;33(8):1539–45.

    Article  CAS  PubMed  Google Scholar 

  69. Thompson G, Mills SJ, Stivaros SM, Jackson A. Imaging of brain tumors: perfusion/permeability. Neuroimaging Clin N Am. 2010;20(3):337–53.

    Article  PubMed  Google Scholar 

  70. Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol. 2006;27(3):475–87.

    CAS  PubMed  Google Scholar 

  71. Choi YJ, Kim HS, Jahng GH, Kim SJ, Suh DC. Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol. 2013;54(4):448–54.

    Article  PubMed  Google Scholar 

  72. Liu X, Tian W, Kolar B, Yeaney GA, Qiu X, Johnson MD, et al. MR diffusion tensor and perfusion-weighted imaging in preoperative grading of supratentorial nonenhancing gliomas. Neuro-Oncology. 2011;13(4):447–55.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ragel BT, Ryken TC, Kalkanis SN, Ziu M, Cahill D, Olson JJ. The role of biopsy in the management of patients with presumed diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2015;125(3):481–501.

    Article  Google Scholar 

  74. Narang AK, Chaichana KL, Weingart JD, Redmond KJ, Lim M, Olivi A, et al. Progressive low-grade glioma: assessment of prognostic importance of histologic reassessment and MRI findings. World Neurosurg. 2017;99:751–57. doi: 10.1016/j.wneu.2016.04.030. Epub 2016 Apr 19

  75. Barajas Jr RF, Cha S. Benefits of dynamic susceptibility-weighted contrast-enhanced perfusion MRI for glioma diagnosis and therapy. CNS Oncol. 2014;3(6):407–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman TS, et al. Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys. 2001;51(2):478–82.

    Article  CAS  PubMed  Google Scholar 

  77. Law M, Oh S, Babb JS, Wang E, Inglese M, Zagzag D, et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging—prediction of patient clinical response. Radiology. 2006;238(2):658–67.

    Article  PubMed  Google Scholar 

  78. Caseiras GB, Chheang S, Babb J, Rees JH, Pecerrelli N, Tozer DJ, et al. Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur J Radiol. 2010;73(2):215–20.

    Article  PubMed  Google Scholar 

  79. Danchaivijitr N, Waldman AD, Tozer DJ, Benton CE, Brasil Caseiras G, Tofts PS, et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology. 2008;247(1):170–8.

    Article  PubMed  Google Scholar 

  80. Rees J, Watt H, Jager HR, Benton C, Tozer D, Tofts P, et al. Volumes and growth rates of untreated adult low-grade gliomas indicate risk of early malignant transformation. Eur J Radiol. 2009;72(1):54–64.

    Article  PubMed  Google Scholar 

  81. Caseiras GB, Ciccarelli O, Altmann DR, Benton CE, Tozer DJ, Tofts PS, et al. Low-grade gliomas: six-month tumor growth predicts patient outcome better than admission tumor volume, relative cerebral blood volume, and apparent diffusion coefficient. Radiology. 2009;253(2):505–12.

    Article  Google Scholar 

  82. Bourdillon P, Hlaihel C, Guyotat J, Guillotton L, Honnorat J, Ducray F, et al. Prediction of anaplastic transformation in low-grade oligodendrogliomas based on magnetic resonance spectroscopy and 1p/19q codeletion status. J Neuro-Oncol. 2015;122(3):529–37.

    Article  Google Scholar 

  83. Jalbert LE, Neill E, Phillips JJ, Lupo JM, Olson MP, Molinaro AM, et al. Magnetic resonance analysis of malignant transformation in recurrent glioma. Neuro-Oncology. 2016;18(8):1169–79.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Murphy PS, Viviers L, Abson C, Rowland IJ, Brada M, Leach MO, et al. Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy. Br J Cancer. 2004;90(4):781–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Guillevin R, Menuel C, Taillibert S, Capelle L, Costalat R, Abud L, et al. Predicting the outcome of grade II glioma treated with temozolomide using proton magnetic resonance spectroscopy. Br J Cancer. 2011;104(12):1854–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sharma R, D'Souza M, Jaimini A, Hazari PP, Saw S, Pandey S, et al. A comparison study of (11)C-methionine and (18)F-fluorodeoxyglucose positron emission tomography-computed tomography scans in evaluation of patients with recurrent brain tumors. Indian J Nucl Med. 2016;31(2):93–102.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Karunanithi S, Singh H, Sharma P, Gupta DK, Bal C. (18)F-FDG PET-CT-negative recurrent high-grade anaplastic astrocytoma detected by (18)F-FDOPA PET-CT. Nucl Med Mol Imaging. 2013;47(4):299–300.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro-Oncology. 2016;18(3):426–34.

    Article  PubMed  Google Scholar 

  89. Kunz M, Thon N, Eigenbrod S, Hartmann C, Egensperger R, Herms J, et al. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro-Oncology. 2011;13(3):307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thon N, Kunz M, Lemke L, Jansen NL, Eigenbrod S, Kreth S, et al. Dynamic 18F-FET PET in suspected WHO grade II gliomas defines distinct biological subgroups with different clinical courses. Int J Cancer. 2015;136(9):2132–45.

    Article  CAS  PubMed  Google Scholar 

  91. Ribom D, Smits A. Baseline 11C-methionine PET reflects the natural course of grade 2 oligodendrogliomas. Neurol Res. 2005;27(5):516–21.

    Article  PubMed  Google Scholar 

  92. Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Langstrom B, et al. Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer. 2001;92(6):1541–9.

    Article  CAS  PubMed  Google Scholar 

  93. Ribom D, Engler H, Blomquist E, Smits A. Potential significance of (11)C-methionine PET as a marker for the radiosensitivity of low-grade gliomas. Eur J Nucl Med Mol Imaging. 2002;29(5):632–40.

    Article  CAS  PubMed  Google Scholar 

  94. Takano K, Kinoshita M, Arita H, Okita Y, Chiba Y, Kagawa N, et al. Diagnostic and prognostic value of 11C-methionine PET for nonenhancing gliomas. AJNR Am J Neuroradiol. 2016;37(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  95. Galldiks N, Stoffels G, Ruge MI, Rapp M, Sabel M, Reifenberger G, et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med. 2013;54(12):2046–54.

    Article  CAS  PubMed  Google Scholar 

  96. Jansen NL, Suchorska B, Wenter V, Eigenbrod S, Schmid-Tannwald C, Zwergal A, et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med. 2014;55(2):198–203.

    Article  CAS  PubMed  Google Scholar 

  97. Bette S, Gempt J, Delbridge C, Kirschke JS, Schlegel J, Foerster S, et al. Prognostic value of O-(2-[18F]-fluoroethyl)-L-tyrosine-positron emission tomography imaging for histopathologic characteristics and progression-free survival in patients with low-grade glioma. World Neurosurg. 2016;89:230–9.

    Article  PubMed  Google Scholar 

  98. Pyka T, Gempt J, Ringel F, Huttinger S, van Marwick S, Nekolla S, et al. Prediction of glioma recurrence using dynamic (1, 8)F-fluoroethyltyrosine PET. AJNR Am J Neuroradiol. 2014;35(10):1924–9.

    Article  CAS  PubMed  Google Scholar 

  99. Villani V, Carapella CM, Chiaravalloti A, Terrenato I, Piludu F, Vidiri A, et al. The role of PET [18F] FDOPA in evaluating low-grade glioma. Anticancer Res. 2015;35(9):5117–22.

    CAS  PubMed  Google Scholar 

  100. Belohlavek O, Fencl P, Majovsky M, Jaruskova M, Benes V. FLT-PET in previously untreated patients with low-grade glioma can predict their overall survival. Nucl Med Rev Cent East Eur. 2014;17(1):7–12.

    Article  PubMed  Google Scholar 

  101. Metellus P, Colin C, Taieb D, Guedj E, Nanni-Metellus I, de Paula AM, et al. IDH mutation status impact on in vivo hypoxia biomarkers expression: new insights from a clinical, nuclear imaging and immunohistochemical study in 33 glioma patients. J Neuro-Oncol. 2011;105(3):591–600.

    Article  CAS  Google Scholar 

  102. Shinozaki N, Uchino Y, Yoshikawa K, Matsutani T, Hasegawa A, Saeki N, et al. Discrimination between low-grade oligodendrogliomas and diffuse astrocytoma with the aid of 11C-methionine positron emission tomography. J Neurosurg. 2011;114(6):1640–7.

    Article  PubMed  Google Scholar 

  103. Saito T, Maruyama T, Muragaki Y, Tanaka M, Nitta M, Shinoda J, et al. 11C-methionine uptake correlates with combined 1p and 19q loss of heterozygosity in oligodendroglial tumors. AJNR Am J Neuroradiol. 2013;34(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  104. Iwadate Y, Shinozaki N, Matsutani T, Uchino Y, Saeki N. Molecular imaging of 1p/19q deletion in oligodendroglial tumours with 11C-methionine positron emission tomography. J Neurol Neurosurg Psychiatry. 2016;87(9):1016–21.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Jansen NL, Schwartz C, Graute V, Eigenbrod S, Lutz J, Egensperger R, et al. Prediction of oligodendroglial histology and LOH 1p/19q using dynamic [(18)F]FET-PET imaging in intracranial WHO grade II and III gliomas. Neuro-Oncology. 2012;14(12):1473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Okita Y, Nonaka M, Shofuda T, Kanematsu D, Yoshioka E, Kodama Y, et al. (11)C-methinine uptake correlates with MGMT promoter methylation in nonenhancing gliomas. Clin Neurol Neurosurg. 2014;125:212–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Benjamin Ellingson, PhD, for providing some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Whitney B. Pope MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London Ltd.

About this chapter

Cite this chapter

Pope, W.B., Spitler, K. (2017). Molecular Imaging of Diffuse Low Grade Glioma. In: Duffau, H. (eds) Diffuse Low-Grade Gliomas in Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-55466-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55466-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55464-8

  • Online ISBN: 978-3-319-55466-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics