Skip to main content

Understanding Phase Transitions with Local Optima Networks: Number Partitioning as a Case Study

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10197))

Abstract

Phase transitions play an important role in understanding search difficulty in combinatorial optimisation. However, previous attempts have not revealed a clear link between fitness landscape properties and the phase transition. We explore whether the global landscape structure of the number partitioning problem changes with the phase transition. Using the local optima network model, we analyse a number of instances before, during, and after the phase transition. We compute relevant network and neutrality metrics; and importantly, identify and visualise the funnel structure with an approach (monotonic sequences) inspired by theoretical chemistry. While most metrics remain oblivious to the phase transition, our results reveal that the funnel structure clearly changes. Easy instances feature a single or a small number of dominant funnels leading to global optima; hard instances have a large number of suboptimal funnels attracting the search. Our study brings new insights and tools to the study of phase transitions in combinatorial optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  2. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  3. Gent, I.P., Walsh, T.: The SAT phase transition. In: Proceedings of ECAI 1996, vol. 94, pp. 105–109. PITMAN (1994)

    Google Scholar 

  4. Culberson, J., Gent, I.P.: Frozen development in graph coloring. Theor. Comput. Sci. 265(1), 227–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gent, I.P., Walsh, T.: Phase transitions and annealed theories: number partitioning as a case study. In: Proceedings of ECAI 1996, pp. 170–174. PITMAN (1996)

    Google Scholar 

  6. Gomes, C., Walsh, T.: Randomness and structure. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, vol. 2, pp. 639–664. Elsevier, New York (2006)

    Chapter  Google Scholar 

  7. Kambhampati, S.C., Liu, T.: Phase transition and network structure in realistic SAT problems. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2013, pp. 1619–1620. AAAI Press (2013)

    Google Scholar 

  8. Martin, O.C., Monasson, R., Zecchina, R.: Statistical mechanics methods and phase transitions in optimization problems. Theor. Comput. Sci. 265(1), 3–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tomassini, M., Vérel, S., Ochoa, G.: Complex-network analysis of combinatorial spaces: the NK landscape case. Phys. Rev. E 78(6), 066114 (2008)

    Article  Google Scholar 

  10. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

    Article  Google Scholar 

  11. Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110(14), 6896–6906 (1999)

    Article  Google Scholar 

  12. Lunacek, M., Whitley, D., Sutton, A.: The impact of global structure on search. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 498–507. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87700-4_50

    Chapter  Google Scholar 

  13. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures by means of exploratory landscape analysis. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 265–272. ACM, New York (2015)

    Google Scholar 

  14. Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 58–73. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30698-8_5

    Chapter  Google Scholar 

  15. Ochoa, G., Veerapen, N.: Additional dimensions to the study of funnels in combinatorial landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 2016, pp. 373–380. ACM, New York (2016)

    Google Scholar 

  16. Herrmann, S., Ochoa, G., Rothlauf, F.: Communities of local optima as funnels in fitness landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 2016, pp. 325–331. ACM, New York (2016)

    Google Scholar 

  17. Ferreira, F.F., Fontanari, J.F.: Probabilistic analysis of the number partitioning problem. J. Phys. A: Math. Gen. 31(15), 3417 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mertens, S.: Phase transition in the number partitioning problem. Phys. Rev. Lett. 81(20), 4281–4284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stadler, P.F., Hordijk, W., Fontanari, J.F.: Phase transition and landscape statistics of the number partitioning problem. Phys. Rev. E 67(5), 056701 (2003)

    Article  Google Scholar 

  20. Flamm, C., Hofacker, I.L., Stadler, P.F., Wolfinger, M.T.: Barrier trees of degenerate landscapes. Z. Phys. Chem. (Int. J. Res. Phys. Chem. Chem. Phy.) 216(2/2002), 155–173 (2002)

    Google Scholar 

  21. Alyahya, K., Rowe, J.E.: Phase transition and landscape properties of the number partitioning problem. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 206–217. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44320-0_18

    Google Scholar 

  22. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimizations. Oper. Res. Lett. 16(2), 101–113 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hains, D.R., Whitley, L.D., Howe, A.E.: Revisiting the big valley search space structure in the TSP. J. Oper. Res. Soc. 62(2), 305–312 (2011)

    Article  Google Scholar 

  24. Berry, R.S., Kunz, R.E.: Topography and dynamics of multidimensional interatomic potential surfaces. Phys. Rev. Lett. 74, 3951–3954 (1995)

    Article  Google Scholar 

  25. Wales, D.J.: Energy landscapes and properties of biomolecules. Phys. Biol. 2(4), S86–S93 (2005)

    Article  Google Scholar 

  26. Becker, O.M., Karplus, M.: The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J. Chem. Phys. 106(4), 1495 (1997)

    Article  Google Scholar 

  27. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. Phys. Rev. Lett. 94, 197205 (2005)

    Article  Google Scholar 

  28. Stadler, P.F.: Fitness landscapes. Appl. Math. Comput. 117, 187–207 (2002)

    MathSciNet  Google Scholar 

  29. Huynen, M.A., Stadler, P.F., Fontana, W.: Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Nat. Acad. Sci. U.S.A. 93(1), 397–401 (1996)

    Article  Google Scholar 

  30. Barnett, L.: Ruggedness and neutrality - the NKp family of fitness landscapes. In: Adami, C., Belew, R.K., Kitano, H., Taylor, C. (eds.) Proceedings of the Sixth International Conference on Artificial Life, ALIFE VI, pp. 18–27. The MIT Press, Cambridge (1998)

    Google Scholar 

  31. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of the quadratic assignment problem. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010)

    Google Scholar 

  32. Daolio, F., Tomassini, M., Vérel, S., Ochoa, G.: Communities of minima in local optima networks of combinatorial spaces. Phys. A: Stat. Mech. Appl. 390(9), 1684–1694 (2011)

    Article  Google Scholar 

  33. Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolutionary algorithm. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1777–1784. IEEE (2005)

    Google Scholar 

  34. Mertens, S.: The easiest hard problem: number partitioning. In: Percus, A., Istrate, G., Moore, C. (eds.) Computational Complexity and Statistical Physics. The Santa Fe Institute Studies in the Sciences of Complexity, vol. 125, pp. 125–139. Oxford University Press, New York (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Leverhulme Trust [award number RPG-2015-395] and by the UK’s Engineering and Physical Sciences Research Council [grant number EP/J017515/1].

Data Access. All data generated during this research are openly available from the Stirling Online Repository for Research Data (http://hdl.handle.net/11667/85).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Ochoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M. (2017). Understanding Phase Transitions with Local Optima Networks: Number Partitioning as a Case Study. In: Hu, B., López-Ibáñez, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2017. Lecture Notes in Computer Science(), vol 10197. Springer, Cham. https://doi.org/10.1007/978-3-319-55453-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55453-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55452-5

  • Online ISBN: 978-3-319-55453-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics