Skip to main content

SynapCountJ: A Validated Tool for Analyzing Synaptic Densities in Neurons

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2016)

Abstract

The quantification of synapses is instrumental to measure the evolution of synaptic densities of neurons under the effect of some physiological conditions, neuronal diseases or even drug treatments. However, the manual quantification of synapses is a tedious, error-prone, time-consuming and subjective task; therefore, reliable tools that might automate this process are desirable. In this paper, we present SynapCountJ, an ImageJ plugin, that can measure synaptic density of individual neurons obtained by immunofluorescence techniques, and also can be applied for batch processing of neurons that have been obtained in the same experiment or using the same setting. The procedure to quantify synapses implemented in SynapCountJ is based on the colocalization of three images of the same neuron (the neuron marked with two antibody markers and the structure of the neuron) and is inspired by methods coming from Computational Algebraic Topology. SynapCountJ provides a procedure to semi-automatically quantify the number of synapses of neuron cultures; as a result, the time required for such an analysis is greatly reduced. The computations performed by SynapCountJ have been validated by comparing the results with those of a formally verified algorithm (implemented in a different system).

This work was supported by the Ministerio de Economía y Competitividad projects [MTM2013-41775-P, MTM2014-54151-P, BFU2010-17537]. G. Mata was also supported by a PhD grant awarded by the University of La Rioja [FPI-UR-13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Formath: formalisation of mathematics (2010–2013). http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath

  2. Amorim, A., et al.: A verified information-flow architecture. In: 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2014) (2014)

    Google Scholar 

  3. Aransay, J., Ballarin, C., Rubio, J.: A mechanized proof of the Basic Perturbation Lemma. J. Autom. Reasoning 40(4), 271–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ayala, R., Domínguez, E., Francés, A., Quintero, A.: Homotopy in digital spaces. Discrete Appl. Math. 125, 3–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benton, N.: Machine Obstructed Proof: how many months can it take to verify 30 assembly instructions? (2006)

    Google Scholar 

  6. Cuesto, G., Enriquez-Barreto, L., Caramés, C., et al.: Phosphoinositide-3-kinase activation controls synaptogenesis and spinogenesis in hippocampal neurons. J. Neurosci. 31(8), 2721–2733 (2011)

    Article  Google Scholar 

  7. Cuesto, G., Jordán-Álvarez, S., Enriquez-Barreto, L., et al.: GSK3\(\beta \) inhibition promotes synaptogenesis in Drosophila and mammalian neurons. Plos One 10(3), e0118475 (2015). doi:10.1371/journal.pone.0118475

    Article  Google Scholar 

  8. Danielson, E., Lee, S.H.: SynPAnal: software for rapid quantification of the density and intensity of protein puncta from fluorescence microscopy images of neurons. PLoS ONE 9(12), e115298 (2014). doi:10.1371/journal.pone.0115298

    Article  Google Scholar 

  9. DaRocha-Souto, B., Scotton, T.C., Coma, M., et al.: Brain oligomeric \(\beta \)-amyloid but not total amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice. J. Neuropathol. Exp. Neurol. 70(5), 360–376 (2003)

    Article  Google Scholar 

  10. Devices, M.: Metamorph research imaging (2015). http://www.moleculardevices.com/systems/metamorph-research-imaging

  11. Domínguez, C., Rubio, J.: Effective homology of bicomplexes, formalized in Coq. Theor. Comput. Sci. 412, 962–970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The Kenzo program. Institut Fourier, Grenoble (1998). https://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/

  13. Franco, B., Bogdanik, L., Bobinnec, Y., et al.: Shaggy, the homolog of glycogen synthase kinase 3, controls neuromuscular junction growth in Drosophila. J. Neurosci. 24(29), 6573–6577 (2004)

    Article  Google Scholar 

  14. González-Díaz, R., Real, P.: On the Cohomology of 3D digital images. Discrete Appl. Math. 147(2–3), 245–263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hales, T.: The Flyspeck Project fact sheet (2005). Project description available at http://code.google.com/p/flyspeck/

  16. Heras, J., Pascual, V., Rubio, J.: A certified module to study digital images with the Kenzo system. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6927, pp. 113–120. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Heras, J., Dénès, M., Mata, G., Mörtberg, A., Poza, M., Siles, V.: Towards a certified computation of homology groups for digital images. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 49–57. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Lambán, L., Martín-Mateos, F.J., Rubio, J., Ruiz-Reina, J.L.: Verifying the bridge between simplicial topology and algebra: the Eilenberg-Zilber algorithm. Logic J. IGpPL 22(1), 39–65 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Linkert, M., Rueden, C.T., Allan, C., et al.: Metadata matters: access to image data in the real world. J. Cell Biol. 189(5), 777–782 (2010)

    Article  Google Scholar 

  20. Mata, G., et al.: Zigzag persistent homology for processing neuronal images. Pattern Recogn. Lett. 62(1), 55–60 (2015)

    Article  MathSciNet  Google Scholar 

  21. Mata, G., et al.: Automatic detection of neurons in high-content microscope images using machine learning approaches. In: Proceedings of the 13th IEEE International Symposium on Biomedical Imaging (ISBI 2016). IEEE Xplore (2016)

    Google Scholar 

  22. Meijering, E., Jacob, M., Sarria, J.C.F., et al.: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A 58(2), 167–176 (2004)

    Article  Google Scholar 

  23. Morales, M., Colicos, M.A., Goda, Y.: Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27(3), 539–550 (2000)

    Article  Google Scholar 

  24. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  25. de Greñu de Pedro, J.D.: Análisis Matemático de rutinas de procesamiento de imágenes digitales en Fiji/ImageJ. Technical report, Universidad de La Rioja (2014)

    Google Scholar 

  26. Poza, M., Domínguez, C., Heras, J., Rubio, J.: A certified reduction strategy for homological image processing. ACM Trans. Comput. Logic 15(3), 23 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Romero, A., Heras, J., Rubio, J., Sergeraert, F.: Defining and computing persistent Z-homology in the general case. CoRR abs/1403.7086 (2014)

    Google Scholar 

  28. Romero, A., Rubio, J.: Homotopy groups of suspended classifying spaces: an experimental approach. Math. Comput. 82, 2237–2244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Romero, A., Sergeraert, F.: Discrete Vector Fields and Fundamental Algebraic Topology (2010). http://arxiv.org/abs/1005.5685v1

  30. Schindelin, J., Argand-Carreras, I., Frise, E., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  31. Schmitz, S.K., Hjorth, J.J.J., Joemail, R.M.S., et al.: Automated analysis of neuronal morphology, synapse number and synaptic recruitment. J. Neurosci. Methods 195(2), 185–193 (2011)

    Article  Google Scholar 

  32. Schneider, C., Rasband, W., Eliceiri, K.: NIH Image to ImageJ. Nat. Methods 9, 671–675 (2012)

    Article  Google Scholar 

  33. Ségonne, F., Grimson, E., Fischl, B.: Topological correction of subcortical segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 695–702. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  34. Selkoe, D.J.: Alzheimer’s diseases is a synaptic failure. Science 298(5594), 789–791 (2002)

    Article  Google Scholar 

  35. Sergeraert, F.: Effective homology, a survey. Technical report, Institut Fourier (1992). http://www-fourier.ujf-grenoble.fr/sergerar/Papers/Survey.pdf

  36. Shiwarski, D.J., Dagda, R.D., Chu, C.T.: Green and red puncta colocalization (2014). http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:colocalization_analysis_macro_for_red_and_green_puncta:start

  37. Wark, B.: Puncta analyzer v2.0 (2013). https://github.com/physion/puncta-analyzer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadea Mata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mata, G., Cuesto, G., Heras, J., Morales, M., Romero, A., Rubio, J. (2017). SynapCountJ: A Validated Tool for Analyzing Synaptic Densities in Neurons. In: Fred, A., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2016. Communications in Computer and Information Science, vol 690. Springer, Cham. https://doi.org/10.1007/978-3-319-54717-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54717-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54716-9

  • Online ISBN: 978-3-319-54717-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics