Skip to main content

Edible Mushrooms: Cultivation, Bioactive Molecules, and Health Benefits

  • Living reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Mushrooms are globally appreciated for their nutritional value and medicinal properties. Their cultivation is an effective bioconversion technology of transforming wastes and woods into potentially valuable resources and could also be an important part of sustainable agriculture and forestry. Although India has the advantage of favorable agroclimate, abundance of agrowastes, relatively low-cost labor, and a rich fungal biodiversity, it has witnessed a lukewarm response in growth of mushroom cultivation. Out of the total mushroom produced in India, white button mushroom share is 73% followed by oyster mushroom (16%), paddy straw mushroom (7%), and milky mushroom (3%). The per capita consumption of mushrooms in India is also very meager and is even less than 100 g per year. Besides low fat and high protein and vitamin contents, mushrooms are rich sources of several minerals and trace elements, as well as dietary fibers. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. Of late, mushrooms have emerged as wonderful source of nutraceuticals, antioxidants, anticancer, prebiotic, immunomodulating, anti-inflammatory, cardiovascular, antimicrobial, and antidiabetic. Owing to the synergistic action of present bioactive molecules, majority of mushroom products possess beneficial health effects and can be used on a regular basis without harm. Therefore, they are considered as perspective organisms to develop different healthcare biotech product. Mushrooms could potentially be very important in future food supplies and in new dimensions of sustainable agriculture and forestry. In this chapter, an attempt has been made to provide an insight into the various aspects of cultivation of mushroom cultivation in India, nutritional benefits, therapeutic potential, and bioactive components present in edible mushrooms.

This is a preview of subscription content, log in via an institution.

References

  1. Chang ST, Miles PG (1982) Introduction to mushroom science. In: Chang ST, Quimio TH (eds) Tropical mushrooms: biological nature and cultivation methods. Chinese University Press, Hong Kong, pp 3–10

    Google Scholar 

  2. Chamberlain J, Bush R, Hammett A (1998) Non-timber forest products: the other forest products. For Prod J 48:10–19

    Google Scholar 

  3. Falconer J, Koppell CRS (1990) The major significance of ‘minor’ forest products: the local use and value of forests in the West African humid forest zone. FAO Community Forestry Note; Food and Agriculture Organization of the United Nations, Roma

    Google Scholar 

  4. Gilbert FA, Robinson RF (1957) Food from fungi. Econ Bot 11:126–145

    Article  Google Scholar 

  5. Vinceti B, Termote C, Ickowitz A, Powell B, Kehlenbeck K, Hunter D (2013) The contribution of forests and trees to sustainable diets. Sustainability 5:4797–4824

    Article  Google Scholar 

  6. Chang ST (2006) The world mushroom industry: trends and technological development. Int J Med Mushrooms 8:297–314

    Article  Google Scholar 

  7. Arora D (2008) Notes on economic mushrooms. Econ Bot 62:540–544

    Article  Google Scholar 

  8. Yang X, He J, Li C, Ma J, Yang, Xu J (2008) Matsutake trade in Yunnan Province, China: an overview. Econ Bot 62:269–277

    Article  Google Scholar 

  9. Fanzo J, Cogill B, Mattei F (2012) Metrics of sustainable diets and food systems. In: Technical brief-Madrid roundtable. Bioversity International and Daniel and Nina Carasso Foundation, Rome

    Google Scholar 

  10. Chang ST, Wasser SP (2017) The cultivation and environmental impact of mushrooms. Printed from the oxford Research Encyclopaedia, Environmental Science (c) Oxford University Press, p 43

    Book  Google Scholar 

  11. Kirk PM, Cannon PF, David JC, Stalpers JA (2008) Ainsworth & Brisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford

    Book  Google Scholar 

  12. Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to more robust estimate? Biodivers Conserv 21:2425–2433

    Article  Google Scholar 

  13. Wasser SP (2010) Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms 12(1):1–16

    Article  CAS  Google Scholar 

  14. Wasser SP (2002) Review of medicinal mushrooms advances: good news from old allies. Herbal Gram 56:28–33

    Google Scholar 

  15. Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms 1:31–62

    Article  CAS  Google Scholar 

  16. Chang ST, Wasser SP (2017) The cultivation and environmental impact of mushrooms. Agric Environ. https://doi.org/10.1093/acrefore/9780199389414.013.231

  17. Singh M, Kamal S, Sharma VP (2017) Status and trends in world mushroom production-I. Mushroom Res 26(1):1–20

    Google Scholar 

  18. Li Y (2012) Present development situation and tendency of edible mushroom industry in China. In: Zhang J, Hexiang W, Mingjie C (eds) Proceedings of 18th congress of the international society of mushroom science. China Agriculture Press, Beijing, pp 1–9

    Google Scholar 

  19. Gupta S, Summuna B, Moni G, Mantoo A (2016) Mushroom cultivation: a means of nutritional security in India. Asia Pac J Food Saf Secur 2(1):3–12

    Google Scholar 

  20. Sharma VP, Sudheer KA, Gautam Y, Singh M, Kamal S (2017) Status of mushroom production in India. Mushroom Res 26(2):111–120

    Google Scholar 

  21. Satish K, Sharma VP, Shirur M, Kamal S (2017) Status of milky mushroom (Calocybe indica) in India – a review. Mushroom Res 26(1):21–39

    Google Scholar 

  22. Shirur M, Shivalingegowda NS (2015) Mushroom marketing channels and consumer behaviour: a critical analysis. Mysore J Agric Sci 49(2):390–393

    Google Scholar 

  23. Zhanxi, Zhanhua (2000) Training manual of APEMT China-chapter 11, Volvariella volvacea cultivation, pp 100–109

    Google Scholar 

  24. Ahlawat OP, Tewari RP (2007) Cultivation technology of paddy straw mushroom (Volvariella volvacea). Technical bulletin. National Research Centre for Mushroom (ICAR), Chamaghat, p 36

    Google Scholar 

  25. Manzi P, Aguzzi A, Pizzoferrato L (2001) Nutritional value of mushrooms widely consumed in Italy. Food Chem 73:321–325

    Article  CAS  Google Scholar 

  26. Sánchez C (2010) Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 85(5):1321–1337

    Article  PubMed  CAS  Google Scholar 

  27. Dundar A, Acy H, Yildiz A (2008) Yield performance and nutritional contents of three oyster mushroom species cultivated on wheat stalk. Afr J Biotechnol 7:3497–3501

    CAS  Google Scholar 

  28. Pavel K (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113(1):9–16

    Article  CAS  Google Scholar 

  29. Heleno SA, Barros L, Sousa MJ, Martins A, Ferreira ICFR (2010) Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chem 119:1443–1450

    Article  CAS  Google Scholar 

  30. Mattila P, Konko K, Euvola M, Pihlava J, Astola J, Vahteristo L (2001) Contents of vitamins, mineral elements and some phenolic compound in cultivated mushrooms. J Agric Food Chem 42:2449–2453

    Article  Google Scholar 

  31. Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira IC (2008) Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 46:2742–2747

    Article  CAS  PubMed  Google Scholar 

  32. Pehrsson PR, Haytowitz DB, Holden JM (2003) The USDA’s national food and nutrient analysis program: update 2002. J Food Compos Anal 16:331–341

    Article  Google Scholar 

  33. Sánchez C (2004) Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol 64(6):756–762

    Article  PubMed  CAS  Google Scholar 

  34. Ferreira ICFR, Barros L, Abreu RMV (2009) Antioxidants in wild mushrooms. Curr Med Chem 16:1543–1560

    Article  CAS  PubMed  Google Scholar 

  35. Pereira E, Barros L, Martins A, Ferreira ICFR (2012) Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chem 130:394–403

    Article  CAS  Google Scholar 

  36. Vaz JA, Heleno SA, Martins A, Almeida GM, Vasconcelos MH, Ferreira ICFR (2010) Wild mushrooms Clitocybe alexandri and Lepista inversa: in vitro antioxidant activity and growth inhibition of human tumour cell lines. Food Chem Toxicol 48:2881–2884

    Article  CAS  PubMed  Google Scholar 

  37. Ahlawat OP, Manikandan K, Singh M (2016) Proximate composition of different mushroom varieties and effect of UV light exposure on vitamin D content in Agaricus bisporus and Volvariella volvacea. Mushroom Res 25(1):1–8

    Google Scholar 

  38. Rathee S, Rathee D, Rathee D (2012) Mushrooms as therapeutic agents. Braz J Pharmacogn 22(2):459–474

    Article  CAS  Google Scholar 

  39. Sadler M, Saltmarsh M (1998) Functional foods: the consumer, the products and the evidence. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  40. Longvah T, Deosthale YG (1998) Composition and nutritional studies on edible wild mushroom from Northeast India. Food Chem 63:331–334

    Article  CAS  Google Scholar 

  41. Maga JA (1981) Mushroom flavor. J Agric Food Chem 29:1–4

    Article  CAS  Google Scholar 

  42. Clifford AJ, Heid MK, Peerson JM, Bills ND (1991) Bioavailability of food folates and evaluation of food matrix effects with a rat bioassay. J Nutr 121:445–453

    Article  CAS  PubMed  Google Scholar 

  43. Bano Z, Rajarathnam S (1988) Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Crit Rev Food Sci Nutr 27:87–158

    Article  CAS  PubMed  Google Scholar 

  44. Mau JL, Chao GR, Wu KT (2001) Antioxidant properties of methanolic extracts from several ear mushrooms. J Agric Food Chem 49:5461–5467

    Article  CAS  PubMed  Google Scholar 

  45. Ribeiroa B, Pinhoa PG, Andradea PB, Baptistab P, Valentao P (2009) Fatty acid composition of wild edible mushrooms species: a comparative study. Microchem J 93:29–35

    Article  CAS  Google Scholar 

  46. Xu T, Beelman RB (2015) The bioactive compounds in medicinal mushrooms have potential protective effects against neurodegenerative diseases. Adv Food Technol Nutr Sci Open J 1(2):62–65. https://doi.org/10.17140/AFTNSOJ-1-110

    Article  Google Scholar 

  47. Yip KP, Fung KP, Chang ST, Tam SC (1987) Purification and mechanism of the hypotensive action of an extract from edible mushroom Pleurotus sajor-caju. Neurosci Lett Suppl 28:559

    Google Scholar 

  48. Wang HX, Liu WK, Ng TB et al (1996) The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology 31(2–3): 205–211. https://doi.org/10.1016/0162-3109(95)00049-6

    Article  CAS  PubMed  Google Scholar 

  49. Chang ST, Buswell JA, Chiu SW (1993) Mushroom biology and mushroom products. The Chinese University Press, Hong Kong

    Google Scholar 

  50. Kasuga A, Aoyagi Y, Sugahara T (1993) Antioxidative activities of several mushroom extracts. J Jpn Soc Food Sci Technol 40:56–63

    Article  Google Scholar 

  51. Mau JL, Lin HC, Song SF (2002) Antioxidant properties of several specialty mushrooms. Food Res Int 35:519–526

    Article  CAS  Google Scholar 

  52. Sun MT, Xiao JT, Zhang SQ, Liu YJ, Li ST (1984) Therapeutic effect of some foods on hyperlipidermia in man. Acta Nutr Sin 6:127–133

    Google Scholar 

  53. Tokita F, Shibukawa N, Yasumoto T, Kaneda T (1972) Isolation and chemical structure of the plasma-cholesterol reducing substance from shiitake mushroom. Mushroom Sci 8:783–788

    CAS  Google Scholar 

  54. Ryong LH, Tertov VV, Vasiley AW, Tutelyan VA, Orekhov AN (1989) Antiatherogenic and antiatherosclerotic effects of mushroom extracts revealed in human aortic intima cell culture. Drug Dev Res 17:109–117

    Article  Google Scholar 

  55. Cimerman NG (1999) Medicinal value of the genus Pleurotus (Fr.) P. Karst. (Agaricales S. R., basidiomycetes). Int J Med Mushrooms 1:69–80

    Article  Google Scholar 

  56. Cheung PCK (1996) The hypocholesterolemic effect of two edible mushrooms: Auricularia auricula (tree ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats. Nutr Res 16:1721–1725

    Article  Google Scholar 

  57. Kabir Y, Kimura S (1989) Dietary mushrooms reduce blood pressure in spontaneously hypertensive rats. J Nutr Sci Vitaminol 35:91–94

    Article  CAS  PubMed  Google Scholar 

  58. Chen Q (1989) Antilipemic effect of polysaccharides from Auricularia auricular, Tremella fuciformis, and Tremella fuciformis spores. Zhongguo Yaoke Daxue Xuebao 20:344–347

    Google Scholar 

  59. Sheng J, Chen Q (1990) Effects of polysaccharides from Auricularia auricula, Tremella fuciformis, and Tremella fuciformis spores on experimental thrombin formation. Zhongguo Yaoke Daxue Xuebae 21:39–42

    Google Scholar 

  60. Mizuno T (1995) Bioactive biomolecules of mushrooms: food function and medicinal effect of mushroom fungi. Food Rev Int 11:7–12

    CAS  Google Scholar 

  61. Alarcon-Aguilara FJ, Roman-Ramos R, Perez-Gutierrez S, Aguilara-Contreras A, Contreras-Weber CC, Flores-Sanez JL (1998) Study of the antihyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol 61:101–110

    Article  CAS  PubMed  Google Scholar 

  62. Ahmad N, Bansal AK, Kidwai JR (1984) Effect of PHA-B fraction of Agaricus bisporus lectin on insulin release and 45Ca2C uptake by islet of Langerhans in vitro. Acta Diabetol 21:63–70

    Article  CAS  Google Scholar 

  63. Gray AM, Flatt PR (1998) Insulin-releasing and insulin-like activity of Agaricus campestris (mushroom). J Endocrinol 157:259–266

    Article  CAS  PubMed  Google Scholar 

  64. Windholz M (1983) The Merck index, 10th edn. Merck and Co, Rahway

    Google Scholar 

  65. Thekkuttuparambil AA, Kainoor K (2007) Janardhanan. Indian medicinal mushrooms as a source of antioxidant and antitumor agents. J Clin Biochem Nutr 40:157–162

    Article  Google Scholar 

  66. Lucas EH, Montesano R, Pepper MS, Hafner M, Sablon E (1957) Tumor inhibitors in Boletus edulis and other holobasidiomycetes. Antibiot Chemother 7:1–4

    CAS  Google Scholar 

  67. Lucas EH, Byerrum M, Clarke DA, Reilly HC, Stevens JA, Stock CC (1958) Production of oncostatic principles in vivo and in vitro by species of the genus Calvatia. Antibiot Annu 6:493–496

    PubMed  Google Scholar 

  68. Reshetnikov SV, Wasser SP, Tan KK (2001) Higher basidiomycetes as a source of antitumor and immunostimulating polysaccharides (review). Int J Med Mushrooms 3:361–394

    CAS  Google Scholar 

  69. Lindequist U, Teuscher E, Narbe G (1990) Neue Wirkstoffe aus Basidiomyceten. Phytothérapie 11:139–149

    Google Scholar 

  70. Eo SK, Kim YS, Lee CK, Han SS (1999) Antiviral activities of various water and methanol soluble substances isolated from Ganoderma lucidum. J Ethnopharmacol 68:129–136

    Article  CAS  PubMed  Google Scholar 

  71. Takazawa H, Tajima F, Miyashita C (1982) An antifungal compound from “shiitake” (Lentinus edodes). Yakugaku Zasshi 102:489–491

    Article  CAS  PubMed  Google Scholar 

  72. Mothana RAA, Jansen R, Julich WD, Lindequist U (2000) Ganomycin A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J Nat Prod 63:416–418

    Article  CAS  PubMed  Google Scholar 

  73. Bender S, Dumitrache CN, Backhaus J, Christie G, Cross RF, Lonergan GT (2003) A case for caution in assessing the antibiotic activity of extracts of culinary-medicinal shiitake mushroom [Lentinus edodes (Berk.) singer] (Agaricomycetidae). Int J Med Mushrooms 5:31–35

    Article  Google Scholar 

  74. Badalyan SM (2004) Antiprotozoal activity and mitogenic effect of mycelium of culinary-medicinal shiitake mushroom Lentinus edodes (Berk.) singer (Agaricomycetidae). Int J Med Mushrooms 6:131–138

    Article  Google Scholar 

  75. Brandt CR, Piraino F (2000) Mushroom antivirals. Recent Res Dev Antimicrob Agents Chemother 4:11–26

    CAS  Google Scholar 

  76. El-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N (1998) Anti-HIV-1 and antiHIV-1-protease substances from Ganoderma lucidum. Phytochemistry 49(6): 1651–1657. https://doi.org/10.1016/S0031-9422(98)00254-4

    Article  CAS  PubMed  Google Scholar 

  77. Sano M, Yoshino K, Matsuzawa T, Ikekawa T (2002) Inhibitory effects of edible higher basidiomycetes mushroom extracts on mouse type IV allergy. Int J Med Mushrooms 4:37–41

    Article  Google Scholar 

  78. Kohda H, Tokumoto W, Sakamoto K, Fujii M, Hirai Y, Yamasaki K (1985) The biologically-active constituents of Ganoderma lucidum (Fr) Karst-histamine release-inhibitory triterpenes. Chem Pharm Bull 33:1367–1373

    Article  CAS  PubMed  Google Scholar 

  79. Tasaka K, Mio M, Izushi K, Akagi M, Makino T (1988) Anti-allergic constituents in the culture medium of Ganoderma lucidum. (II). The inhibitory effect of cyclooctasulfur on histamine release. Agents Actions 23:157–160

    Article  CAS  PubMed  Google Scholar 

  80. Kreisel H, Lindequist U, Horak M (1990) Distribution, ecology and immunosuppressive properties of Tricholoma populinum (Basidiomycetes). Zentralbl Mikrobiol 145:393–396

    CAS  PubMed  Google Scholar 

  81. Ali NAA, Pilgrim H, Ludke J, Lindequist U (1996) Inhibition of chemiluminescence response of human mononuclear cells and suppression of mitogen induced proliferation of spleen lymphocytes of mice by hispolon and hispidin. Pharmazie 51:667–670

    CAS  PubMed  Google Scholar 

  82. Kim SH, Song YS, Kim SK, Kim BC, Lim CJ, Park EH (2004) Anti-inflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus. J Ethnopharmacol 93:141–146

    Article  PubMed  Google Scholar 

  83. Zhang Y, Mills G, Nair MG (2002) Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa. J Agric Food Chem 50:7581–7585

    Article  CAS  PubMed  Google Scholar 

  84. Chen RY, Yu DQ (1993) Studies on the triterpenoid constituents of the spores from Ganoderma lucidum Karst. J Chin Pharm Sci 2:91–96

    CAS  Google Scholar 

  85. Wang MY, Liu Q, Che QM, Lin ZB (2002) Effects of total triterpenoids extract from Ganoderma lucidum (Curt.:Fr.) P.Karst. (Reishi mushroom) on experimental liver injury models induced by carbon tetrachloride or d-galactosamine in mice. Int J Med Mushrooms 4:337–342

    CAS  Google Scholar 

  86. Chang ST, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect and environmental impact, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  87. Badalyan SM (2012) Edible ectomycorrhizal mushrooms. In: Zambonelli A, Bonito G (eds) Edible ectomycorrhizal mushrooms. Soil Biology series, vol 34. Springer, Berlin, pp 317–334. ISBN: 978-3-642-33822-9

    Chapter  Google Scholar 

  88. Guillamón S, García-Lafuente A, Lozano M et al (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 81(7):715–723

    Article  PubMed  CAS  Google Scholar 

  89. Chu KT, Xia LX, Ng TB (2005) Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides 26(11):2098–2103

    Article  CAS  PubMed  Google Scholar 

  90. Wang JB, Wang HX, Ng TB (2007) A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 28(3):560–565

    Article  PubMed  CAS  Google Scholar 

  91. Ngai PHK, Zhao Z, Ng TB (2005) Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides 26(2):191–196

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Y, Mills GL, Nair MG (2003) Cyclooxygenase inhibitory and antioxidant compounds from the fruiting body of an edible mushroom, Agrocybe aegerita. Phytomedicine 10(5): 386–390

    Article  CAS  PubMed  Google Scholar 

  93. Wang J, Liu YM, Cao W et al (2012) Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis 27(2):159–165

    Article  CAS  PubMed  Google Scholar 

  94. Qian GM, Pan GF, Guo JY (2011) Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res 26(24): 2358–2362

    Article  CAS  Google Scholar 

  95. Wong JH, Ng TB, Wang H et al (2011) Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine 18(5):387–392

    Article  CAS  PubMed  Google Scholar 

  96. Liu QH, Wang HX, Ng TB (2006) First report of a xylose-specific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim Biophys Acta 1760(12):1914–1919. https://doi.org/10.1016/j.bbagen.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  97. Zhang GQ, Sun J, Wang HX (2009) A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim Pol 56(3):415–421

    CAS  PubMed  Google Scholar 

  98. Lin CH, Sheu GT, Lin YW et al (2010) A new immunomodulatory protein from Ganoderma microsporum inhibits epidermal growth factor mediated migration and invasion in A549 lung cancer cells. Process Biochem 45(9):1537–1542. https://doi.org/10.1016/j.procbio.2010.06.006

    Article  CAS  Google Scholar 

  99. Zhang G, Sun J, Wang H et al (2010a) First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine 17(10):775–781. https://doi.org/10.1016/j.phymed.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  100. Wong JH, Wang HX, Ng TB (2008) Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl Microbiol Biotechnol 81(4):669–674

    Article  CAS  PubMed  Google Scholar 

  101. Wang HX, Ng TB (2006a) Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 69(5):521–525

    Article  CAS  PubMed  Google Scholar 

  102. El Fakharany EM, Haroun BM, Ng TB et al (2010) Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept Lett 17(8): 1031–1039. https://doi.org/10.2174/092986610791498948

    Article  PubMed  Google Scholar 

  103. Zhang GQ, Wang YF, Zhang XQ (2010b) Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochem 45(5):627–633. https://doi.org/10.1016/j.procbio.2009.12.010

    Article  CAS  Google Scholar 

  104. Ko JL, Hsu CT, Lin RH et al (1995) A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem 228:244–249

    Article  CAS  PubMed  Google Scholar 

  105. Lin WH, Huang CH, Hsu CI et al (1997) Dimerization of the N-terminal amphipathic a-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J Biol Chem 272:2044–2048

    Google Scholar 

  106. Hsu HC, Hsu CI, Lin RH et al (1997) Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem J 323:557–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Du M, Zhao L, Li CR (2007) Purification and characterization of a novel fungi Se-containing protein from Se-enriched Ganoderma lucidum mushroom and its Se-dependent radical scavenging activity. Eur Food Res Technol 224(5):659–665

    Article  CAS  Google Scholar 

  108. Chen JN, Wang YT, Wu JS (2009) A glycoprotein extracted from golden oyster mushroom Pleurotus citrinopileatus exhibiting growth inhibitory effect against U937 leukemia cells. J Agric Food Chem 57(15):6706–6711. https://doi.org/10.1021/jf901284s

    Article  CAS  PubMed  Google Scholar 

  109. Kodama N, Komuta K, Nanba H (2002) Can maitake MD fraction aid cancer patients? Altern Med Rev 7:236–239

    PubMed  Google Scholar 

  110. Cote J, Caillet S, Doyon G (2010) Bioactive compounds in cranberries and their biological properties. Crit Rev Food Sci Nutr 50(7):666–679

    Article  CAS  PubMed  Google Scholar 

  111. D’Archivio M, Filesi C, Vari R et al (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11:1321–1342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Dziezak JD (1986) Antioxidants-the ultimate answer to oxidation. Food Technol 40(9):94

    CAS  Google Scholar 

  113. Yagi K (1970) A rapid method for evaluation of oxidation and antioxidants. Agric Biol Chem 34(1):142–145

    Article  CAS  Google Scholar 

  114. Palacios I, Lozano M, Moro C (2011) Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem 128(3):674–678. https://doi.org/10.1016/j.foodchem.2011.03.085

    Article  CAS  Google Scholar 

  115. Dugler B, Gonuz A, Gucin F (2004) Antimicrobial activity of the macrofungus Cantharellus cibarius. JBS 7(9):1535–1539

    Google Scholar 

  116. Witkowska MA, Zujko ME, Mironczuk-Chodakowska I (2011) Comparative study of wild edible mushrooms as sources of antioxidants. Int J Med Mushrooms 13(4):335–341

    Article  CAS  PubMed  Google Scholar 

  117. Nukata M, Hashimoto T, Yamamoto I et al (2002) Neogrifolin derivatives possessing anti-oxidative activity from the mushroom Albatrellus ovinus. Phytochemistry 59(7):731–737

    Article  CAS  PubMed  Google Scholar 

  118. Mizuno T (1999) Bioactive substances in Hericium erinaceus (Bull.:Fr.) Pers. (Yamabushitake), and its medicinal utilization. Int J Med Mushrooms 1:105–119. https://doi.org/10.1615/IntJMedMushrooms.v1.i2.10

    Article  CAS  Google Scholar 

  119. Attarat J, Phermthai T (2015) Bioactive compounds in three edible Lentinus mushrooms. Walailak J Sci Technol 12(6):491–504

    Google Scholar 

  120. Chowdhury MMH, Kubra K, Ahmed SR (2015) Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Ann Clin Microbiol Antimicrob 14:8. https://doi.org/10.1186/s12941-015-0067-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dai YC, Zhou LW, Cui BK et al (2010) Current advances in Phellinus sensu lato: medicinal species, functions, metabolites and mechanisms. Appl Microbiol Biotechnol 87(5):1587–1593

    Article  CAS  PubMed  Google Scholar 

  122. Elsayed EA, Enshasy HE, Wadaan MAM et al (2014) Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediat Inflamm 1:1–15

    Article  CAS  Google Scholar 

  123. Badalyan SM (2014) Potential of mushroom bioactive molecules to develop healthcare biotech products. In: Proceedings of the 8th international conference on mushroom biology and mushroom products (ICMBMP8)

    Google Scholar 

  124. Wu DM, Duan WQ, Liu Y, Cen Y (2010) Anti-inflammatory effect of the polysaccharides of Golden needle mushroom in burned rats. Int J Biol Macromol 46(1):100–103. https://doi.org/10.1016/j.ijbiomac.2009.10.013

    Article  CAS  PubMed  Google Scholar 

  125. Batbayar S, Lee DH, Kim HW (2012) Immunomodulation of fungal b-glucan in host defense signaling by dectin-1. Biomol Ther 20(5):433–445

    Article  CAS  Google Scholar 

  126. Lavi I, Levinson D, Peri I et al (2010) Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Appl Microbiol Biotechnol 85(6):1977–1990

    Article  CAS  PubMed  Google Scholar 

  127. Firenzuoli F, Gori L, Lombardo G (2007) The medicinal mushroom Agaricus blazei murrill: review of literature and pharmaco-toxicological problems. Evid Based Complement Altern Med 5(1):3–15

    Article  Google Scholar 

  128. Bae AH, Lee SW, Ikeda M et al (2004) Rod-like architecture and helicity of the poly(C)/schizophyllan complex observed by AFM and SEM. Carbohydr Res 339(2):251–258

    Article  CAS  PubMed  Google Scholar 

  129. Lavi I, Nimri L, Levinson D et al (2012) Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. J Gastroenterol 47(5): 504–518

    Article  CAS  PubMed  Google Scholar 

  130. Gao Y, Zhou S, Chen G et al (2002) A phase I/II study of a Ganoderma lucidum (Curt.:Fr.) P. Karst (LingZhi, Reishi mushroom) extract in patients with chronic hepatitis B. Int J Med Mushrooms 4(4):2321–2327

    Article  Google Scholar 

  131. Tong H, Xia F, Feng K et al (2009) Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresour Technol 100:1682–1686. https://doi.org/10.1016/j.biortech.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  132. Chatterjee S, Biswas G, Basu SK (2011) Antineoplastic effect of mushrooms: a review. Aust J Crop Sci 5(7):904–911

    Google Scholar 

  133. Kim GY, Kim SH, Hwang SY et al (2003) Oral administration of proteoglycan isolated from Phellinus linteus in the prevention and treatment of collagen-induced arthritis in mice. Biol Pharm Bull 26:823–831

    Article  PubMed  Google Scholar 

  134. Morigiwa A, Kitabatake K, Fujimoto Y et al (1986) Angiotensin converting enzyme inhibitory triterpenes from Ganoderma lucidum. Chem Pharm Bull 34:3025–3028

    Article  CAS  PubMed  Google Scholar 

  135. Ma L, Chen H, Dong P et al (2013) Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem 139(1–4):503–508. https://doi.org/10.1016/j.foodchem.2013.01.030

    Article  CAS  PubMed  Google Scholar 

  136. Han J, Chen Y, Bao L (2013) Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus. Fitoterapia 84:22–31. https://doi.org/10.1016/j.fitote.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  137. Chen CC, Shiao YJ, Lin RD et al (2006) Neuroprotective diterpenes from the fruiting body of Antrodia camphorata. J Nat Prod 69:689–691

    Article  CAS  PubMed  Google Scholar 

  138. Khan MA et al (2013) Hericium erinaceus: an edible mushroom with medicinal values. J Complement Integr Med 24:10

    Google Scholar 

  139. Standish LJ et al (2008) Trametes versicolor mushroom immune therapy in breast cancer. J Soc Integr Oncol 6:122–128

    PubMed  PubMed Central  Google Scholar 

  140. Badalyan SM (2001) The main groups of therapeutic compounds of medicinal mushrooms. Probl Med Mycol 3:16–23

    Google Scholar 

  141. De Baets S, Vandamme EJ (2001) Extracellular Tremella polysaccharides: structure, properties and applications. Biotechnol Lett 23:1361–1366

    Article  Google Scholar 

  142. Marshall E, Nair N (2009) Make money by growing mushrooms. Food and Agriculture Organization of the United Nations (FAO), Roma

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sachin Gupta or Moni Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gupta, S., Summuna, B., Gupta, M., Annepu, S.K. (2018). Edible Mushrooms: Cultivation, Bioactive Molecules, and Health Benefits. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_86-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_86-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics