Skip to main content

Inorganic Mass Spectrometry

  • Chapter
  • First Online:
Mass Spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Laeter JR, Kurz MD (2006) Alfred Nier and the Sector Field Mass Spectrometer. J Mass Spectrom 41:847–854. doi:10.1002/jms.1057

    Article  CAS  Google Scholar 

  2. Budzikiewicz H, Grigsby RD (2006) Mass Spectrometry and Isotopes: A Century of Research and Discussion. Mass Spectrom Rev 25:146–157. doi:10.1002/mas.20061

    Article  CAS  Google Scholar 

  3. Platzner IT, Habfast K, Walder AJ, Goetz APlatzner IT (eds) (1997) Modern Isotope Ratio Mass Spectrometry. Wiley, Chichester

    Google Scholar 

  4. Tuniz C, Bird JR, Fink D, Herzog GF (1998) Accelerator Mass Spectrometry – Ultrasensitive Analysis for Global Science. CRC Press, Boca Raton

    Google Scholar 

  5. Taylor HE (2000) Inductively Coupled Plasma Mass Spectroscopy. Academic Press, London

    Google Scholar 

  6. de Laeter JR (2001) Applications of Inorganic Mass Spectrometry. John Wiley & Sons, New York

    Google Scholar 

  7. Becker JS (2008) Inorganic Mass Spectrometry: Principles and Applications. John Wiley & Sons, Chichester

    Google Scholar 

  8. Prohaska T, Irrgeher J, Zitek A, Jakubowski N (eds) (2015) Sector Field Mass Spectrometry for Elemental and Isotopic Analysis. Royal Society of Chemistry, Cambridge

    Google Scholar 

  9. Douthitt CB (2008) Commercial Development of HR-ICPMS, MC-ICPMS and HR-GDMS. J Anal At Spectrom 23:685–689. doi:10.1039/B800341F

    Article  CAS  Google Scholar 

  10. Hieftje GM (2008) Emergence and Impact of Alternative Sources and Mass Analyzers in Plasma Source Mass Spectrometry. J Anal At Spectrom 23:661–672. doi:10.1039/B717319A

    Article  CAS  Google Scholar 

  11. de Laeter JR, De Bièvre P, Peiser HS (1992) Isotope Mass Spectrometry in Metrology. Mass Spectrom Rev 11:193–245. doi:10.1002/mas.1280110303

    Article  Google Scholar 

  12. Ma R, Staton I, McLeod CW, Gomez MB, Gomez MM, Palacios MA (2001) Assessment of Airborne Platinum Contamination via ICP-Mass Spectrometric Analysis of Tree Bark. J Anal At Spectrom 16:1070–1075. doi:10.1039/B102940C

    Article  CAS  Google Scholar 

  13. Stuewer D, Jakubowski N (1998) Elemental Analysis by Inductively Coupled Plasma Mass Spectrometry with Sector Field Instruments: A Progress Report. J Mass Spectrom 33:579–590. doi:10.1002/(SICI)1096-9888(199807)33:7<579::AID-JMS688>3.0.CO;2-W

    Article  CAS  Google Scholar 

  14. Barker J, Garner RC (1999) Biomedical Applications of Accelerator Mass Spectrometry-Isotope Measurements at the Level of the Atom. Rapid Commun Mass Spectrom 13:285–293. doi:10.1002/(SICI)1097-0231(19990228)13:4<285::AID-RCM469>3.0.CO;2-R

    Article  CAS  Google Scholar 

  15. Kutschera W (2005) Progress in Isotope Analysis at Ultra-Trace Level by AMS. Int J Mass Spectrom 242:145–160. doi:10.1016/j.ijms.2004.10.029

    Article  CAS  Google Scholar 

  16. Becker JS, Zoriy M, Becker JS, Pickhardt C, Przybylski M (2004) Determination of Phosphorus and Metals in Human Brain Proteins After Isolation by Gel Electrophoresis by Laser Ablation Inductively Coupled Plasma Source Mass Spectrometry. J Anal At Spectrom 19:149–152. doi:10.1039/B311274H

    Article  CAS  Google Scholar 

  17. Guenther D, Hattendorf B (2005) Solid Sample Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Trends Anal Chem 24:255–265. doi:10.1016/j.trac.2004.11.017

    Article  CAS  Google Scholar 

  18. Becker JS, Zoriy M, Becker JS, Dobrowolska J, Matusch A (2007) Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in Elemental Imaging of Biological Tissues and in Proteomics. J Anal At Spectrom 22:736–744. doi:10.1039/B701558E

    Article  CAS  Google Scholar 

  19. Cheah ELC, Koh HL (2008) Biomedical Applications of Accelerator Mass Spectrometry. Curr Anal Chem 4:102–110. doi:10.2174/157341108784587786

    Article  CAS  Google Scholar 

  20. Becker JS, Matusch A, Wu B (2014) ioimaging Mass Spectrometry of Trace Elements – Recent Advance and Applications of LA-ICP-MS: A Review. Anal Chim Acta 835:1–18. doi:10.1016/j.aca.2014.04.048

    Article  CAS  Google Scholar 

  21. Houk RS, Fassel VA, Flesch GD, Svec HJ, Gray AL, Taylor CE (1980) Inductively Coupled Argon Plasma as an Ion Source for Mass Spectrometric Determination of Trace Elements. Anal Chem 52:2283–2289. doi:10.1021/ac50064a012

    Article  CAS  Google Scholar 

  22. Szpunar J (2004) Metallomics: A New Frontier in Analytical Chemistry. Anal Bioanal Chem 378:54–56. doi:10.1007/s00216-003-2333-z

    Article  CAS  Google Scholar 

  23. Lobinski R, Schaumlöffel D, Szpunar J (2006) Mass Spectrometry in Bioinorganic Analytical Chemistry. Mass Spectrom Rev 25:255–289. doi:10.1002/mas.20069

    Article  CAS  Google Scholar 

  24. Swart C, Jakubowski N (2016) Update on the Status of Metrology for Metalloproteins. J Anal At Spectrom 31:1756–1765. doi:10.1039/c6ja00181e

    Article  CAS  Google Scholar 

  25. Walker AV (2008) Why Is SIMS Underused in Chemical and Biological Analysis? Challenges and Opportunities. Anal Chem 80:8865–8870. doi:10.1021/ac8013687

    Article  CAS  Google Scholar 

  26. Cassiday L (2008) SIMS and MALDI: Better Together. Anal Chem 80:8860. doi:10.1021/ac8021828

    Article  CAS  Google Scholar 

  27. Griffiths J (2008) Secondary Ion Mass Spectrometry. Anal Chem 80:7194–7197. doi:10.1021/ac801528u

    Article  CAS  Google Scholar 

  28. McDonnell LA, Heeren RMA (2007) Imaging Mass Spectrometry. Mass Spectrom Rev 26:606–643. doi:10.1002/mas.20124

    Article  CAS  Google Scholar 

  29. Adams F, Vertes A (1990) Inorganic Mass Spectrometry of Solid Samples. Fresenius J Anal Chem 337:638–647. doi:10.1007/BF00323098

    Article  CAS  Google Scholar 

  30. Tanner SD, Baranov VI, Bandura DR (2002) Reaction Cells and Collision Cells for ICP-MS: a Tutorial Review. Spectrochim Acta, Part B 57B:1361–1452. doi:10.1016/S0584-8547(02)00069-1

    Article  CAS  Google Scholar 

  31. Koppenaal DW, Eiden GC, Barinaga CJ (2004) Collision and Reaction Cells in Atomic Mass Spectrometry: Development, Status, and Applications. J Anal At Spectrom 19:561–570. doi:10.1039/B403510K

    Article  CAS  Google Scholar 

  32. Becker JS, Dietze HJ (2000) Inorganic Mass Spectrometric Methods for Trace, Ultratrace, Isotope, and Surface Analysis. Int J Mass Spectrom 197:1–35. doi:10.1016/S1387-3806(99)00246-8

    Article  CAS  Google Scholar 

  33. Richter S, Goldberg SA (2003) Improved Techniques for High Accuracy Isotope Ratio Measurements of Nuclear Materials Using Thermal Ionization Mass Spectrometry. Int J Mass Spectrom 229:181–197. doi:10.1016/S1387-3806(03)00338-5

    Article  CAS  Google Scholar 

  34. Encinar JR, Ouerdane L, Buchmann W, Tortajada J, Lobinski R, Szpunar J (2003) Identification of Water-Soluble Selenium-Containing Proteins in Selenized Yeast by Size-Exclusion-Reversed-Phase HPLC-ICP-MS Followed by MALDI-TOF and Electrospray Q-TOF Mass Spectrometry. Anal Chem 75:3765–3774. doi:10.1021/ac034103m

    Article  CAS  Google Scholar 

  35. Halas S, Durakiewicz T (1998) Filament Temperature Stabilizer for a Thermal Ionization Mass Spectrometer. Int J Mass Spectrom 181:167–171. doi:10.1016/S1387-3806(98)14186-6

    Article  CAS  Google Scholar 

  36. Kawano H, Page FM (1983) Experimental Methods and Techniques for Negative-Ion Production by Surface Ionization. Part I. Fundamental Aspects of Surface Ionization. Int J Mass Spectrom Ion Phys 50:1–33. doi:10.1016/0020-7381(83)80001-1

    Article  CAS  Google Scholar 

  37. Kawano H, Hidaka Y, Page FM (1983) Experimental Methods and Techniques for Negative-Ion Production by Surface Ionization. Part II. Instrumentation and Operation. Int J Mass Spectrom Ion Phys 50:35–75. doi:10.1016/0020-7381(83)80002-3

    Article  CAS  Google Scholar 

  38. Heumann KG, Schindlmeier W, Zeininger H, Schmidt M (1985) Application of an Economical and Small Thermal Ionization Mass Spectrometer for Accurate Anion Trace Analyses. Fresenius Z Anal Chem 320:457–462. doi:10.1007/BF00479812

    Article  CAS  Google Scholar 

  39. Heumann KG, Kastenmayer P, Zeininger H (1981) Lead and Thallium Trace Determination in the ppm and ppb Range in Biological Material by Mass Spectrometric Isotope Dilution Analysis. Fresenius Z Anal Chem 306:173–177. doi:10.1007/BF00482091

    Article  CAS  Google Scholar 

  40. Waidmann E, Emons H, Duerbeck HW (1994) Trace Determination of Tl, Cu, Pb, Cd, and Zn in Specimens of the Limnic Environment Using Isotope Dilution Mass Spectrometry with Thermal Ionization. Fresenius J Anal Chem 350:293–297. doi:10.1007/BF00322485

    Article  CAS  Google Scholar 

  41. Schade U, Stoll R, Röllgen FW (1983) Thermal Surface Ionization Mass Spectrometry of Organic Salts. Int J Mass Spectrom Ion Phys 46:337–340. doi:10.1016/0020-7381(83)80121-1

    Article  CAS  Google Scholar 

  42. Moens L (1997) Applications of Mass Spectrometry in the Trace Element Analysis of Biological Materials. Fresenius J Anal Chem 359:309–316. doi:10.1007/s002160050579

    Article  CAS  Google Scholar 

  43. Koppenaal DW (1990) Atomic Mass Spectrometry. Anal Chem 62:303R–324R. doi:10.1021/ac00211a015

    Article  CAS  Google Scholar 

  44. Verlinden J, Gijbels R, Adams F (1986) Application of Spark-Source Mass Spectrometry in the Analysis of Semiconductor Materials. A Review. J Anal At Spectrom 1:411–419. doi:10.1039/JA9860100411

    Article  CAS  Google Scholar 

  45. Jochum KP (1997) Elemental analysis by spark source mass spectrometry. In: Gill R (ed) Modern Analytical Geochemistry. Addison Wesley/Longman, Harlow

    Google Scholar 

  46. Jochum KP, Stoll B, Pfänder JA, Seufert M, Flanz M, Maissenbacher P, Hofmann M, Hofmann AW (2001) Progress in Multi-Ion Counting Spark-Source Mass Spectrometry (MIC-SSMS) for the Analysis of Geological Samples. Fresenius J Anal Chem 370:647–653. doi:10.1007/s002160100786

    Article  CAS  Google Scholar 

  47. Saprykin AI, Becker JS, Dietze HJ (1999) Investigation of the Analytical Performance of Gliding Spark Source Mass Spectrometry (GSSMS) for the Trace Analysis of Nonconducting Materials. Fresenius J Anal Chem 364:763–767. doi:10.1007/s002160051429

    Article  CAS  Google Scholar 

  48. Hoffmann V, Kasik M, Robinson PK, Venzago C (2005) Glow Discharge Mass Spectrometry. Anal Bioanal Chem 381:173–188. doi:10.1007/s00216-004-2933-2

    Article  CAS  Google Scholar 

  49. Wiedemann B, Alt HC, Meyer JD, Michelmann RW, Bethge K (1999) Spark Source Mass Spectrometric Calibration of the Local Vibrational Mode Absorption of Carbon in Gallium Arsenide on Arsenic Sublattice Sites. Fresenius J Anal Chem 364:768–771. doi:10.1007/s002160051430

    Article  CAS  Google Scholar 

  50. Gijbels R, Bogaerts A (1997) Recent Trends in Solid Mass Spectrometry. GDMS and Other Methods. Fresenius J Anal Chem 359:326–330. doi:10.1007/s002160050581

    Article  CAS  Google Scholar 

  51. Stuewer D (1990) Glow Discharge Mass Spectrometry – A Versatile Tool for Elemental Analysis. Fresenius J Anal Chem 337:737–742. doi:10.1007/BF00322247

    Article  CAS  Google Scholar 

  52. Marcus RK, King FL Jr, Harrison WW (1986) Hollow Cathode Plume as an Atomization/Ionization Source for Solids Mass Spectrometry. Anal Chem 58:972–974. doi:10.1021/ac00295a067

    Article  CAS  Google Scholar 

  53. Harrison WW, Hess KR, Marcus RK, King FL (1986) Glow Discharge Mass Spectrometry. Anal Chem 58: 341A–342A, 344A, 346A, 348A, 350A, 352A. doi: 10.1021/ac00293a002

  54. Duckworth DC, Marcus RK (1989) Radio Frequency Powered Glow Discharge Atomization/Ionization Source for Solids Mass Spectrometry. Anal Chem 61:1879–1886. doi:10.1021/ac00192a020

    Article  CAS  Google Scholar 

  55. Marcus RK (1994) Radiofrequency Powered Glow Discharges for Emission and Mass Spectrometry: Operating Characteristics, Figures of Merit and Future Prospects. J Anal At Spectrom 9:1029–1037. doi:10.1039/JA9940901029

    Article  CAS  Google Scholar 

  56. Marcus RK (1996) Radiofrequency Powered Glow Discharges: Opportunities and Challenges. Plenary Lecture. J Anal At Spectrom 11:821–828. doi:10.1039/JA9961100821

    Article  CAS  Google Scholar 

  57. Jakubowski N, Prohaska T, Rottmann L, Vanhaecke F (2011) Inductively Coupled Plasma- and Glow Discharge Plasma-Sector Field Mass Spectrometry, Part I. Tutorial: Fundamentals and Instrumentation. J Anal At Spectrom 26:693–726. doi:10.1039/c0ja00161a

    Article  CAS  Google Scholar 

  58. Jakubowski N, Prohaska T, Vanhaecke F, Roos PH, Lindemann T (2011) Inductively Coupled Plasma- and Glow Discharge Plasma-Sector Field Mass Spectrometry, Part II. Applications. J Anal At Spectrom 26:727–757. doi:10.1039/c0ja00007h

    Article  CAS  Google Scholar 

  59. Harrison WW, Klingler JA, Ratliff PH, Mei Y, Barshick CM (1990) Glow Discharge Techniques in Analytical Chemistry. Anal Chem 62:943A–949A. doi:10.1021/ac00217a001

    Article  CAS  Google Scholar 

  60. King FL, Harrison WW (1990) Glow Discharge Mass Spectrometry: an Introduction to the Technique and Its Utility. Mass Spectrom Rev 9:285–317. doi:10.1002/mas.1280090303

    Article  CAS  Google Scholar 

  61. Bogaerts A, Gijbels R (1999) New Developments and Applications in GDMS. Fresenius J Anal Chem 364:367–375. doi:10.1007/s002160051352

    Article  CAS  Google Scholar 

  62. Nelis T, Pallosi J (2006) Glow Discharge as a Tool for Surface and Interface Analysis. Appl Spectrosc Rev 41:227–258. doi:10.1080/05704920600620345

    Article  CAS  Google Scholar 

  63. Jakubowski N, Dorka R, Steers E, Tempez A (2007) Trends in Glow Discharge Spectroscopy. J Anal At Spectrom 22:722–735. doi:10.1039/B705238N

    Article  CAS  Google Scholar 

  64. Penning FM (1927) Über Ionisation durch metastabile Atome. Naturwissenschaften 15:818. doi:10.1007/BF01505431

    Article  CAS  Google Scholar 

  65. Bogaerts A (1999) The Glow Discharge: an Exciting Plasma! J Anal At Spectrom 14:1375–1384. doi:10.1039/A900772E

    Article  CAS  Google Scholar 

  66. Xing Y, Xiaojia L, Haizhou W (2008) Determination of Trace Elements and Correction of Mass Spectral Interferences in Superalloy Analyzed by Glow Discharge Mass Spectrometry. Eur J Mass Spectrom 14:211–218. doi:10.1255/ejms.930

    Article  CAS  Google Scholar 

  67. Winchester MR, Payling R (2004) Radio-Frequency Glow Discharge Spectrometry: A Critical Review. Spectrochim Acta, Part B 59B:607–666. doi:10.1016/j.sab.2004.02.013

    Article  CAS  Google Scholar 

  68. Majidi V, Moser M, Lewis C, Hang W, King FL (2000) Explicit Chemical Speciation by Microsecond Pulsed Glow Discharge Time-of-Flight Mass Spectrometry: Concurrent Acquisition of Structural, Molecular and Elemental Information. J Anal At Spectrom 15:19–25. doi:10.1039/A905477D

    Article  CAS  Google Scholar 

  69. Lewis CL, Moser MA, Dale DE Jr, Hang W, Hassell C, King FL, Majidi V (2003) Time-Gated Pulsed Glow Discharge: Real-Time Chemical Speciation at the Elemental, Structural, and Molecular Level for Gas Chromatography Time-of-Flight Mass Spectrometry. Anal Chem 75:1983–1996. doi:10.1021/ac026242u

    Article  CAS  Google Scholar 

  70. Fliegel D, Fuhrer K, Gonin M, Guenther D (2006) Evaluation of a Pulsed Glow Discharge Time-of-Flight Mass Spectrometer as a Detector for Gas Chromatography and the Influence of the Glow Discharge Source Parameters on the Information Volume in Chemical Speciation Analysis. Anal Bioanal Chem 386:169–179. doi:10.1007/s00216-006-0515-1

    Article  CAS  Google Scholar 

  71. Nagulin KY, Akhmetshin DS, Gilmutdinov AK, Ibragimov RA (2015) Three-Dimensional Modeling and Schlieren Visualization of Pure Ar Plasma Flow in Inductively Coupled Plasma Torches. J Anal At Spectrom 30:360–367. doi:10.1039/c4ja00254g

    Article  CAS  Google Scholar 

  72. Bandura DR, Baranov VI, Tanner SD (2001) Reaction Chemistry and Collisional Processes in Multipole Devices for Resolving Isobaric Interferences in ICP-MS. Fresenius J Anal Chem 370:454–470. doi:10.1007/s002160100869

    Article  CAS  Google Scholar 

  73. Wilbur S (2008) A Pragmatic Approach to Managing Interferences in ICP-MS. Spectroscopy 23:18–23

    CAS  Google Scholar 

  74. Aeschliman DB, Bajic SJ, Baldwin DP, Houk RS (2003) High-Speed Digital Photographic Study of an Inductively Coupled Plasma During Laser Ablation: Comparison of Dried Solution Aerosols from a Microconcentric Nebulizer and Solid Particles from Laser Ablation. J Anal At Spectrom 18:1008–1014. doi:10.1039/b302546m

    Article  CAS  Google Scholar 

  75. Becker JS, Dietze HJ (1999) Application of Double-Focusing Sector Field ICP Mass Spectrometry with Shielded Torch Using Different Nebulizers for Ultratrace and Precise Isotope Analysis of Long-Lived Radionuclides. J Anal At Spectrom 14:1493–1500. doi:10.1039/A901762C

    Article  CAS  Google Scholar 

  76. Myers DP, Hieftje GM (1993) Preliminary Design Considerations and Characteristics of an Inductively Coupled Plasma-Time-of-Flight Mass Spectrometer. Microchem J 48:259–277. doi:10.1006/mchj.1993.1102

    Article  CAS  Google Scholar 

  77. Myers DP, Li G, Yang P, Hieftje GM (1994) An Inductively Coupled Plasma-Time-of-Flight Mass Spectrometer for Elemental Analysis. Part I: Optimization and Characteristics. J Am Soc Mass Spectrom 5:1008–1016. doi:10.1016/1044-0305(94)80019-7

    Article  CAS  Google Scholar 

  78. Myers DP, Mahoney PP, Li G, Hieftje GM (1995) Isotope Ratios and Abundance Sensitivity Obtained with an Inductively Coupled Plasma-Time-of-Flight Mass Spectrometer. J Am Soc Mass Spectrom 6:920–927. doi:10.1016/1044-0305(95)00484-U

    Article  CAS  Google Scholar 

  79. Hieftje GM, Myers DP, Li G, Mahoney PP, Burgoyne TW, Ray SJ, Guzowski JP (1997) Toward the Next Generation of Atomic Mass Spectrometers. J Anal At Spectrom 12:287–292. doi:10.1039/A605067K

    Article  CAS  Google Scholar 

  80. Westphal CS, McLean JA, Acon BW, Allen LA, Montaser A (2002) Axial Inductively Coupled Plasma Time-of-Flight Mass Spectrometry Using Direct Liquid Sample Introduction. J Anal At Spectrom 17:669–675. doi:10.1039/B200771C

    Article  CAS  Google Scholar 

  81. Tanner M, Guenther D (2008) Measurement and Readout of Mass Spectra with 30 μs Time Resolution, Applied to In-Torch LA-ICP-MS. Anal Bioanal Chem 391:1211–1220. doi:10.1007/s00216-008-1869-3

    Article  CAS  Google Scholar 

  82. Milgram KE, White FM, Goodner KL, Watson CH, Koppenaal DW, Barinaga CJ, Smith BH, Winefordner JD, Marshall AG, Houk RS, Eyler JR (1997) High-Resolution Inductively Coupled Plasma Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 69:3714–3721. doi:10.1021/ac970126n

    Article  CAS  Google Scholar 

  83. Becker JS, Dietze HJ (1998) Ultratrace and Precise Isotope Analysis by Double-Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry. J Anal At Spectrom 13:1057–1063. doi:10.1039/A801528G

    Article  CAS  Google Scholar 

  84. Yang L (2009) Accurate and Precise Determination of Isotopic Ratios by MC-ICP-MS: A Review. Mass Spectrom Rev 28:990–1011. doi:10.1002/mas.20251

    Article  CAS  Google Scholar 

  85. Ardelt D, Polatajko A, Primm O, Reijnen M (2013) Isotope Ratio Measurements with a Fully Simultaneous Mattauch-Herzog ICP-MS. Anal Bioanal Chem 405:2987–2994. doi:10.1007/s00216-012-6543-0

    Article  CAS  Google Scholar 

  86. Mahoney PP, Li G, Hieftje GM (1996) Laser Ablation-Inductively Coupled Plasma Mass Spectrometry with a Time-of-Flight Mass Analyzer. J Anal At Spectrom 11:401–405. doi:10.1039/JA9961100401

    Article  CAS  Google Scholar 

  87. Pisonero J, Kroslakova I, Guenther D, Latkoczy C (2006) Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Direct Analysis of the Spatial Distribution of Trace Elements in Metallurgical-Grade Silicon. Anal Bioanal Chem 386:12–20. doi:10.1007/s00216-006-0658-0

    Article  CAS  Google Scholar 

  88. Neilsen JL, Abildtrup A, Christensen J, Watson P, Cox A, McLeod CW (1998) Laser Ablation Inductively Coupled Plasma-Mass Spectrometry in Combination with Gel Electrophoresis: A New Strategy for Speciation of Metal Binding Serum Proteins. Spectrochim Acta, Part B 53B:339–345. doi:10.1016/S0584-8547(98)00077-9

    Article  CAS  Google Scholar 

  89. Chery CC, Moens L, Cornelis R, Vanhaecke F (2006) Capabilities and Limitations of Gel Electrophoresis for Elemental Speciation: A Laboratory's Experience. Pure Appl Chem 78:91–103. doi:10.1351/pac200678010091

    Article  CAS  Google Scholar 

  90. Konz I, Fernandez B, Fernandez ML, Pereiro R, Gonzalez-Iglesias H, Coca-Prados M, Sanz-Medel A (2014) Quantitative Bioimaging of Trace Elements in the Human Lens by LA-ICP-MS. Anal Bioanal Chem 406:2343–2348. doi:10.1007/s00216-014-7617-y

    Article  CAS  Google Scholar 

  91. Benninghoven A (1975) Developments in Secondary Ion Mass Spectroscopy and Applications to Surface Studies. Surf Sci 53:596–625. doi:10.1016/0039-6028(75)90158-2

    Article  CAS  Google Scholar 

  92. Pachuta SJ, Cooks RG (1987) Mechanisms in Molecular SIMS. Chem Rev 87:647–669. doi:10.1021/cr00079a009

    Article  CAS  Google Scholar 

  93. Benninghoven A, Werner HW, Rudenauer FG (eds) (1987) Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends. Wiley Interscience, New York

    Google Scholar 

  94. Briggs D, Brown A, Vickerman JC (1989) Handbook of Static Secondary Ion Mass Spectrometry. Wiley, Chichester

    Google Scholar 

  95. Arnot FL, Beckett C (1938) Formation of Negative Ions at Surfaces. Nature 141:1011–1012. doi:10.1038/1411011c0

    Article  CAS  Google Scholar 

  96. Arnot FL, Milligan JC (1936) A New Process of Negative-Ion Formation. Proc R Soc A 156:538–560. doi:10.1098/rspa.1936.0166

    Article  CAS  Google Scholar 

  97. Herzog RFK, Viehbock FP (1949) Ion Source for Mass-Spectrography. Phys Rev 76:855–856. doi:10.1103/PhysRev.76.855

    Article  CAS  Google Scholar 

  98. Benninghoven A (1969) Mechanism of Ion Formation and Ion Emission During Sputtering. Z Phys 220:159–180. doi:10.1007/BF01394745

    Article  CAS  Google Scholar 

  99. Benninghoven A (1970) Analysis of Monomolecular Surface Layers of Solids by Secondary Ion Emission. Z Phys 230:403–417. doi:10.1007/BF01394486

    Article  CAS  Google Scholar 

  100. Adams F (2008) Analytical Atomic Spectrometry and Imaging: Looking Backward from 2020 to 1975. Spectrochim Acta, Part B 63B:738–745. doi:10.1016/j.sab.2008.05.001

    Article  CAS  Google Scholar 

  101. Benninghoven A, Sichtermann WK (1978) Detection, Identification and Structural Investigation of Biologically Important Compounds by Secondary Ion Mass Spectrometry. Anal Chem 50:1180–1184. doi:10.1021/ac50030a043

    Article  CAS  Google Scholar 

  102. Coath CD, Long JVP (1995) A High-Brightness Duoplasmatron Ion Source for Microprobe Secondary-Ion Mass Spectrometry. Rev Sci Instrum 66:1018–1023. doi:10.1063/1.1146038

    Article  CAS  Google Scholar 

  103. Konarski P, Kalczuk M, Koscinski J (1992) Bakeable Duoplasmatron Ion Gun for SIMS Microanalysis. Rev Sci Instrum 63:2397–2399. doi:10.1063/1.1142941

    Article  CAS  Google Scholar 

  104. Pacholski ML, Winograd N (1999) Imaging with Mass Spectrometry. Chem Rev 99:2977–3005. doi:10.1021/cr980137w

    Article  CAS  Google Scholar 

  105. Weibel D, Wong S, Lockyer N, Blenkinsopp P, Hill R, Vickerman JC (2003) A C60 Primary Ion Beam System for Time of Flight Secondary Ion Mass Spectrometry: Its Development and Secondary Ion Yield Characteristics. Anal Chem 75:1754–1764. doi:10.1021/ac026338o

    Article  CAS  Google Scholar 

  106. Chait BT, Standing KG (1981) A Time-of-Flight Mass Spectrometer for Measurement of Secondary Ion Mass Spectra. Int J Mass Spectrom Ion Phys 40:185–193. doi:10.1016/0020-7381(81)80041-1

    Article  CAS  Google Scholar 

  107. Standing KG, Chait BT, Ens W, McIntosh G, Beavis R (1982) Time-of-Flight Measurements of Secondary Organic Ions Produced by 1 keV to 16 keV Primary Ions. Nucl Instrum Methods Phys Res 198:33–38. doi:10.1016/0167-5087(82)90048-5

    Article  CAS  Google Scholar 

  108. Jabs HU, Assmann G, Greifendorf D, Benninghoven A (1986) High Performance Liquid Chromatography and Time-of-Flight Secondary Ion Mass Spectrometry: A New Dimension in Structural Analysis of Apolipoproteins. J Lipid Res 27:613–621

    CAS  Google Scholar 

  109. Ens W, Standing KG, Chait BT, Field FH (1981) Comparison of Mass Spectra Obtained with Low-Energy Ion and High-Energy 252Californium Fission Fragment Bombardment. Anal Chem 53:1241–1244. doi:10.1021/ac00231a026

    Article  CAS  Google Scholar 

  110. Lafortune F, Beavis R, Tang X, Standing KG, Chait BT (1987) Narrowing the Gap Between KeV and Fission Fragment Secondary Ion Yields with Nitrocellulose. Rapid Commun Mass Spectrom 1:114–116. doi:10.1002/rcm.1290010707

    Article  CAS  Google Scholar 

  111. Ens W, Main DE, Standing KG, Chait BT (1988) Comparison of Relative Quasi-Molecular Ion Yields for 8-keV Ion and 252Cf Fission Fragment Bombardment. Anal Chem 60:1494–1498. doi:10.1021/ac00166a004

    Article  CAS  Google Scholar 

  112. Olthoff JK, Honovich JP, Cotter RJ (1987) Liquid Secondary Ion Time-of-Flight Mass Spectrometry. Anal Chem 59:999–1002. doi:10.1021/ac00134a016

    Article  CAS  Google Scholar 

  113. Linton RW, Mawn MP, Belu AM, DeSimone JM, Hunt MO Jr, Menceloglu YZ, Cramer HG, Benninghoven A (1993) Time-of-Flight Secondary Ion Mass Spectrometric Analysis of Polymer Surfaces and Additives. Surf Interface Anal 20:991–999. doi:10.1002/sia.740201210

    Article  CAS  Google Scholar 

  114. Galuska AA (1997) ToF-SIMS Determination of Molecular Weights from Polymeric Surfaces and Microscopic Phases. Surf Interface Anal 25:790–798. doi:10.1002/(SICI)1096-9918(199709)25:10<790::AID-SIA301>3.0.CO;2-F

    Article  CAS  Google Scholar 

  115. Bullett NA, Short RD, O'Leary T, Beck AJ, Douglas CWI, Cambray-Deakin M, Fletcher IW, Roberts A, Blomfield C (2001) Direct Imaging of Plasma-Polymerized Chemical Micropatterns. Surf Interface Anal 31:1074–1076. doi:10.1002/sia.1146

    Article  CAS  Google Scholar 

  116. Liu S, Weng LT, Chan CM, Li L, Ho NK, Jiang M (2001) Quantitative Surface Characterization of Poly(styrene)/Poly(4-vinyl phenol) Random and Block Copolymers by ToF-SIMS and XPS. Surf Interface Anal 31:745–753. doi:10.1002/sia.1105

    Article  CAS  Google Scholar 

  117. Médard N, Poleunis C, Vanden Eynde X, Bertrand P (2002) Characterization of Additives at Polymer Surfaces by TOF-SIMS. Surf Interface Anal 34:565–569. doi:10.1002/sia.1361

    Article  CAS  Google Scholar 

  118. Davies N, Weibel DE, Blenkinsopp P, Lockyer N, Hill R, Vickerman JC (2003) Development and Experimental Application of a Gold Liquid Metal Ion Source. Appl Surf Sci 203-204:223–227. doi:10.1016/S0169-4332(02)00631-1

    Article  CAS  Google Scholar 

  119. Nagy G, Walker AV (2007) Enhanced Secondary Ion Emission with a Bismuth Cluster Ion Source. Int J Mass Spectrom 262:144–153. doi:10.1016/j.ijms.2006.11.003

    Article  CAS  Google Scholar 

  120. Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprevote O (2005) Improvement of Biological Time-of-Flight-Secondary Ion Mass Spectrometry Imaging with a Bismuth Cluster Ion Source. J Am Soc Mass Spectrom 16:1608–1618. doi:10.1016/j.jasms.2005.06.005

    Article  CAS  Google Scholar 

  121. Malmberg P, Nygren H (2008) Methods for the Analysis of the Composition of Bone Tissue, with a Focus on Imaging Mass Spectrometry (TOF-SIMS). Proteomics 8:3755–3762. doi:10.1002/pmic.200800198

    Article  CAS  Google Scholar 

  122. Wong SCC, Hill R, Blenkinsopp P, Lockyer NP, Weibel DE, Vickerman JC (2003) Development of a C60 + Ion Gun for Static SIMS and Chemical Imaging. Appl Surf Sci 203-204:219–222. doi:10.1016/S0169-4332(02)00629-3

    Article  CAS  Google Scholar 

  123. Fletcher JS, Lockyer NP, Vickerman JC (2006) C60, Buckminsterfullerene: Its Impact on Biological ToF-SIMS Analysis. Surf Interface Anal 38:1393–1400. doi:10.1002/sia.2461

    Article  CAS  Google Scholar 

  124. Mas S, Perez R, Martinez-Pinna R, Egido J, Vivanco F (2008) Cluster TOF-SIMS Imaging: A New Light for in Situ Metabolomics? Proteomics 8:3735–3745. doi:10.1002/pmic.200800115

    Article  CAS  Google Scholar 

  125. Briggs D, Hearn MJ (1985) Analysis of Polymer Surfaces by SIMS. Part 5. The Effects of Primary Ion Mass and Energy on Secondary Ion Relative Intensities. Int J Mass Spectrom Ion Proc 67:47–56. doi:10.1016/0168-1176(85)83036-6

    Article  CAS  Google Scholar 

  126. Brunelle A, Laprevote O (2009) Lipid Imaging with Cluster Time-of-Flight Secondary Ion Mass Spectrometry. Anal Bioanal Chem 393:31–35. doi:10.1007/s00216-008-2367-3

    Article  CAS  Google Scholar 

  127. Herrmann AM, Ritz K, Nunan N, Clode PL, Pett-Ridge J, Kilburn MR, Murphy DV, O'Donnell AG, Stockdale EA (2007) Nano-Scale Secondary Ion Mass Spectrometry – A New Analytical Tool in Biogeochemistry and Soil Ecology: A Review Article. Soil Biol Biochem 39:1835–1850. doi:10.1016/j.soilbio.2007.03.011

    Article  CAS  Google Scholar 

  128. Fletcher JS, Rabbani S, Henderson A, Blenkinsopp P, Thompson SP, Lockyer NP, Vickerman JC (2008) A New Dynamic in Mass Spectral Imaging of Single Biological Cells. Anal Chem 80:9058–9064. doi:10.1021/ac8015278

    Article  CAS  Google Scholar 

  129. Carado A, Passarelli MK, Kozole J, Wingate JE, Winograd N, Loboda AV (2008) C60 Secondary Ion Mass Spectrometry with a Hybrid-Quadrupole Orthogonal Time-of-Flight Mass Spectrometer. Anal Chem 80:7921–7929. doi:10.1021/ac801712s

    Article  CAS  Google Scholar 

  130. Hellborg R, Skog G (2008) Accelerator Mass Spectrometry. Mass Spectrom Rev 27:398–427. doi:10.1002/mas.20172

    Article  CAS  Google Scholar 

  131. Suter M (2004) 25 Years of AMS – A Review of Recent Developments. Nucl Instr Methods Phys Res B 223-224:139–148. doi:10.1016/j.nimb.2004.04.030

    Article  CAS  Google Scholar 

  132. Stocker M, Doebeli M, Grajcar M, Suter M, Synal HA, Wacker L (2005) A Universal and Competitive Compact AMS Facility. Nucl Instr Methods Phys Res B 240:483–489. doi:10.1016/j.nimb.2005.06.224

    Article  CAS  Google Scholar 

  133. Wacker L, Fifield LK, Olivier S, Suter M, Synal HA (2006) Compact Accelerator Mass Spectrometry: A Powerful Tool to Measure Actinides in the Environment. Spec Publ R Soc Chem 305:44–46

    CAS  Google Scholar 

  134. Nelson DE, Korteling RG, Stott WR (1977) Carbon-14: Direct Detection at Natural Concentrations. Science 198:507–508. doi:10.1126/science.198.4316.507

    Article  CAS  Google Scholar 

  135. Bennett CL, Beukens RP, Clover MR, Grove HE, Liebert RB, Litherland AE, Purser KH, Sondheim WE (1977) Radiocarbon Dating Using Electrostatic Accelerators: Negative Ions Provide the Key. Science 198:508–510. doi:10.1126/science.198.4316.508

    Article  CAS  Google Scholar 

  136. Lappin G, Garner RC (2004) Current Perspectives of 14C-Isotope Measurement in Biomedical Accelerator Mass Spectrometry. Anal Bioanal Chem 378:356–364. doi:10.1007/s00216-003-2348-5

    Article  CAS  Google Scholar 

  137. Brown K, Dingley KH, Turteltaub KW (2005) Accelerator Mass Spectrometry for Biomedical Research. Methods Enzymol 402:423–443. doi:10.1016/S0076-6879(05)02014-8

    Article  CAS  Google Scholar 

  138. Ikeda T (2005) Instruments for Radiation Measurement in Life Sciences. VI. Use of accelerator mass spectrometry in studies on drug metabolism and pharmacokinetics. Radioisotopes 54:15–21. doi:10.3769/radioisotopes.54.15

    Article  CAS  Google Scholar 

  139. Brown K, Tompkins EM, White INH (2006) Applications of Accelerator Mass Spectrometry for Pharmacological and Toxicological Research. Mass Spectrom Rev 25:127–145. doi:10.1002/mas.20059

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gross, J.H. (2017). Inorganic Mass Spectrometry. In: Mass Spectrometry. Springer, Cham. https://doi.org/10.1007/978-3-319-54398-7_15

Download citation

Publish with us

Policies and ethics