Skip to main content

Modeling of Fading and Shadowing

  • Chapter
  • First Online:
Fading and Shadowing in Wireless Systems
  • 967 Accesses

Abstract

Various models to describe the statistical fluctuations in wireless channels are presented. These models range from the simple Rayleigh ones, to cascaded ones, and to complex models such as those based on κ – μ, η – μ, and Nakagami-N-gamma distributions. They are compared in terms of their properties, error rates and outage probabilities. The updated sections provide detailed analysis of the McKay and mixture models for fading and shadowing. The mixture density is expanded to see how it can replace some of the existing statistical models of fading and shadowing. For the updated sections, detailed Matlab scripts are provided (with complete annotation) to supplement the theoretical approach. A section on random number generation relevant to fading and shadowing modeling is also given to complete the pedagogic description of modeling. The properties of Meijer G functions are described in detail in the Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalo, V., Piboongungon, T., et al. (2005). Bit-error rate of binary digital modulation schemes in generalized gamma fading channels. IEEE Communications Letters, 9(2), 139–141.

    Article  Google Scholar 

  • Abdi, A., & Kaveh, M. (1998). K distribution: An appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels. Electronics Letters, 34(9), 851–852.

    Article  Google Scholar 

  • Abdi, A., & Kaveh, M. (2000). Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions. IEEE Communications Letters, 4(4), 122–124.

    Article  Google Scholar 

  • Abdi, A., & Kaveh, M. (2002). Level crossing rate in terms of the characteristic function: A new approach for calculating the fading rate in diversity systems. IEEE Transactions on Communications, 50(9), 1397–1400.

    Article  Google Scholar 

  • Abdi, A., K. Wills, et al. (2000). Comparison of the level crossing rate and average fade duration of Rayleigh, Rice and Nakagami fading models with mobile channel data. In Vehicular Technology Conference, 2000. IEEE VTS-Fall VTC 2000 52nd (Vol. 4, pp. 1850–1857).

    Google Scholar 

  • Abramowitz, M., & Segun, I. A. (Eds.). (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover Publications.

    MATH  Google Scholar 

  • Abu-Dayya, A. A., & Beaulieu, N. C. (1994). Outage probabilities in the presence of correlated lognormal interferers. IEEE Transactions on Vehicular Technology, 43(1), 164–173.

    Article  Google Scholar 

  • Adamchik, V. (1995). The evaluation of integrals of Bessel functions via G-function identities. Journal of Computational and Applied Mathematics, 64(3), 283–290.

    Article  MathSciNet  MATH  Google Scholar 

  • Almhana, J., Liu, Z., Choulakian, V., & McGorman, R. (2006). A recursive algorithm for gamma mixture models. Proceedings of IEEE International Conference on Communications, 1, 197–202.

    MATH  Google Scholar 

  • Alouini, M. S., & Simon, M. K. (1998). Generic form for average error probability of binary signals over fading channels. Electronics Letters, 34(10), 949–950.

    Article  Google Scholar 

  • Alouini, M. S., & Simon, M. K. (2006). Performance of generalized selection combining over Weibull fading channels. Wireless Communications and Mobile Computing, 6(8), 1077–1084.

    Article  Google Scholar 

  • Andersen, J. B. (2002a). Statistical distributions in mobile communications using multiple scattering. In Proceedings of General Assembly International Union of Radio Science, Maastricht, The Netherlands.

    Google Scholar 

  • Andersen, J. B. (2002b). Statistical distributions in mobile communications using multiple scattering, presented at the 27th URSI General Assembly, Maastricht, Netherlands.

    Google Scholar 

  • Annamalai, A., & Tellambura, C. (2001). Error rates for Nakagami-m fading multichannel reception of binary and M-ary signals. IEEE Transactions on Communications, 49(1), 58–68.

    Article  MATH  Google Scholar 

  • Annamalai, A., Tellambura, C., et al. (2001). Simple and accurate methods for outage analysis in cellular mobile radio systems-a unified approach. IEEE Transactions on Communications, 49(2), 303–316.

    Article  MATH  Google Scholar 

  • Annamalai, A., Tellambura, C., et al. (2005). A general method for calculating error probabilities over fading channels. IEEE Transactions on Communications, 53(5), 841–852.

    Article  Google Scholar 

  • Asplund, H., Molisch, A. F., Steinbauer, M. Mehta, N. B. (2002). Clustering of scatterers in mobile radio channels—Evaluation and modeling in the COST259 directional channel model. In Proceedings of IEEE ICC, New York (pp. 901–905).

    Google Scholar 

  • Atapattu, S., Tellambura, C., & Jiang, H. (2011). A mixture gamma distribution to model the SNR of wireless channels. IEEE Transactions on Wireless Communications, 10, 4193–4203.

    Article  Google Scholar 

  • Aulin, T. (1979). A modified model for the fading signal at the mobile radio channel. IEEE Transactions on Vehicular Technology, 28(3), 182–203.

    Article  Google Scholar 

  • Bithas, P., Sagias, N., et al. (2006). On the performance analysis of digital communications over generalized-K fading channels. IEEE Communications Letters, 10(5), 353–355.

    Article  Google Scholar 

  • Braun, W. R., & Dersch, U. (1991). A physical mobile radio channel model. IEEE Transactions on Vehicular Technology, 40(2), 472–482.

    Article  Google Scholar 

  • Bullington, K. (1977). Radio propagation for vehicular communications. IEEE Transactions on Vehicular Technology, 26(4), 295–308.

    Article  Google Scholar 

  • Büyükçorak, S., Vural, M., & Kurt, G. K. (2015). Lognormal mixture shadowing. IEEE Transactions on Vehicular Technology, 64(10), 4386–4398.

    Article  Google Scholar 

  • Chatelain, F., Borgnat, P., Tourneret, J-Y Abry, P. (2008) Parameter estimation for sums of correlated gamma random variables: Application to anomaly detection in internet traffic. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-2008) (pp. 3489–3492).

    Google Scholar 

  • Chen, J. I. Z. (2007). A unified approach to average LCR and AFD performance of SC diversity in generalized fading environments. Journal of the Franklin Institute-Engineering and Applied Mathematics, 344(6), 889–911.

    Article  MATH  Google Scholar 

  • Chizhik, D., Foschini, G. J., Gans, M. J., & Valenzuela, R. A. (2002). Keyholes, correlations, and capacities of multielement transmit and receive antennas. IEEE Transactions on Wireless Communications, 1(2), 361–368.

    Article  Google Scholar 

  • Clark, R. H. (1968). A statistical description of mobile radio reception. BSTJ, 47, 957–1000.

    Google Scholar 

  • Clark, J. R., & Karp, S. (1965). Approximations for lognormally fading optical signals. Proceedings of the IEEE, 1970(58), 1964–1965.

    Google Scholar 

  • Cotton, S. L., & Scanlon, W. G. (2007). Higher order statistics for lognormal small-scale fading in mobile radio channels. IEEE Antennas and Wireless Propagation Letters, 6, 540–543.

    Article  Google Scholar 

  • Coulson, A. J., et al. (1998a). Improved fading distribution for mobile radio. IEE Proceedings on Communications, 145(3), 197–202.

    Article  Google Scholar 

  • Coulson, A. J., et al. (1998b). A statistical basis for lognormal shadowing effects in multipath fading channels. IEEE Transactions on Communications, 46(4), 494–502.

    Article  Google Scholar 

  • Da Costa, D. B., & Yacoub, M. D. (2008). Moment generating functions of generalized fading distributions and applications. IEEE Communications Letters, 12(2), 112–114.

    Article  Google Scholar 

  • Davenport, J. W., Bezdek, J. C., & Hathaway, R. J. (1988). Parameter estimation for finite mixture distributions. Computers & Mathematcs with Applications, 15(10), 819–828.

    Article  MathSciNet  MATH  Google Scholar 

  • Di Renzo, M., Graziosi, F., & Santucci, F. (2010). Channel capacity over generalized fading channels: A novel MGF-based approach for performance analysis and Design of Wireless Communication Systems. IEEE Transactions on Vehicular Technology, 59(1), 127–149.

    Article  Google Scholar 

  • Dong, X., & Beaulieu, N. C. (2001). Average level crossing rate and average fade duration of selection diversity. IEEE Communications Letters, 5(10), 396–398.

    Article  Google Scholar 

  • Ermolova, N. Y. (2008). Moment generating functions of the generalized η-μ and κ-μ distributions and their applications to performance evaluation of communication systems. IEEE Communications Letters, 12(7), 502–504.

    Article  MathSciNet  Google Scholar 

  • Ermolova, N. Y. (2009). Useful integrals for performance evaluation of communication systems in generalized −μ and −μ fading channels. IET Communications, 3(2), 303–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Filho, J. C. S. S., & Yacoub, M. D. (2005a). Highly accurate η-μ approximation to the sum of M independent nonidentical Hoyt variates. IEEE Antennas and Wireless Propagation Letters, 4, 436–438.

    Article  Google Scholar 

  • Filho, J. C. S., & Yacoub, M. D. (2005b). Highly accurate κ & m approximation to sum of M independent non-identical Ricean variates. Electronics Letters, 41(6), 338–339.

    Article  Google Scholar 

  • Fraile, R., Nasreddine, J., et al. (2007). Multiple diffraction shadowing simulation model. IEEE Communications Letters, 11(4), 319–321.

    Article  Google Scholar 

  • Galambos, J., & Simonelli, I. (2004). Products of random variables. New York: Marcel Dekker.

    MATH  Google Scholar 

  • Gilbert, E. N. (1965). Energy reception for mobile radio. BSTJ, 48, 2473–2492.

    Google Scholar 

  • Goodman, J. W. (1985). Statistical optics. New York: Wiley.

    Google Scholar 

  • Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (6th ed.). New York: Academic.

    MATH  Google Scholar 

  • Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products. Oxford: Academic.

    MATH  Google Scholar 

  • Hajri, N., et al. (2009). A study on the statistical properties of double Hoyt fading channels. In Proceedings of the 6th international conference on Symposium on Wireless Communication Systems, Siena, Italy (pp. 201–205).

    Google Scholar 

  • Hansen, F., & Meno, F. I. (1977). Mobile fading; Rayleigh and lognormal superimposed. IEEE Transactions on Vehicular Technology, 26(4), 332–335.

    Article  Google Scholar 

  • Haykin, S. S. (2001). Digital communications. New York: Wiley.

    Google Scholar 

  • Holm, H. (2002). Adaptive coded modulation performance and channel estimation tools for flat fading channels. Ph. D. Thesis, Department of Telecommunications, Norwegian University of Science and Technology.

    Google Scholar 

  • Holm, H., & Alouini, M.-S. (2004). Sum and difference of two squared correlated Nakagami variates in connection with the McKay distribution. IEEE Transactions on Communications, 52, 1367–1376.

    Article  Google Scholar 

  • Jakes, W. C. (1994). Microwave mobile communications. IEEE Press: Piscataway, NJ.

    Book  Google Scholar 

  • Jung, J., Lee, S. R., Park, H., Lee, S., & Lee, I. (2014). Capacity and error probability analysis of diversity reception schemes over generalized-fading channels using a mixture gamma distribution. IEEE.

    Google Scholar 

  • Karadimas, P., & Kotsopoulos, S. A. (2008). A generalized modified Suzuki model with sectored and inhomogeneous diffuse scattering component. Wireless Personal Communications, 47(4), 449–469.

    Article  Google Scholar 

  • Karadimas, P., & Kotsopoulos, S. A. (2010). A modified loo model with partially blocked and three dimensional multipath scattering: Analysis, simulation and validation. Wireless Personal Communications, 53(4), 503–528.

    Article  Google Scholar 

  • Karagiannidis, G. K., Sagias, N. C. and T. A. Tsiftsis, T. A. (2006a) “Closed-form statistics for the sum of squared Nakagami-m variates and its applications.” IEEE Transactions on Communications, 54:1353–1359.

    Google Scholar 

  • Karagiannidis, G. K., Tsiftsis, T. A., & Mallik, R. K. (2006b). Bounds of multihop relayed communications in Nakagami-m fading. IEEE Transactions on Communications, 54, 18–22.

    Article  Google Scholar 

  • Karagiannidis, G. K., Sagias, N. C., et al. (2007). N*Nakagami: A novel stochastic model for cascaded fading channels. IEEE Transactions on Communications, 55(8), 1453–1458.

    Article  Google Scholar 

  • Karmeshu, J., & Agrawal, R. (2007). On efficacy of Rayleigh-inverse Gaussian distribution over K-distribution for wireless fading channels. Wireless Communications and Mobile Computing, 7(1), 1–7.

    Article  Google Scholar 

  • Kim, Y. Y., & Li, S. Q. (1999). Capturing important statistics of a fading shadowing channel for network performance analysis. IEEE Journal on Selected Areas in Communications, 17(5), 888–901.

    Article  Google Scholar 

  • Kostic, I. M. (2005). Analytical approach to performance analysis for channel subject to shadowing and fading. IEE Proceedings Communications, 152(6), 821–827.

    Article  Google Scholar 

  • Laourine, A., Stephenne, A., et al. (2007). Estimating the ergodic capacity of log-normal channels. IEEE Communications Letters, 11(7), 568–570.

    Article  Google Scholar 

  • Laourine, A., Alouini, M. S., et al. (2008). On the capacity of generalized-K fading channels. IEEE Transactions onWireless Communications, 7(7), 2441–2445.

    Article  Google Scholar 

  • Laourine, A., et al. (2009). On the performance analysis of composite multipath/shadowing channels using the G-distribution. IEEE Transactions on Communications, 57(4), 1162–1170.

    Article  Google Scholar 

  • Lee, W. C. Y. (1990). Estimate of channel capacity in Rayleigh fading environment. IEEE Transactions on Vehicular Technology, 39, 187–189.

    Article  Google Scholar 

  • Liu, Z., Almhana, J., Wang, F., & McGorman, R. (2007). Mixture lognormal approximations to lognormal sum distributions. IEEE Communications Letters, 11(9), 711–713.

    Article  Google Scholar 

  • Loo, C. (1985). A statistical model for a land mobile channel. IEEE Transactions on Vehicular Technology, 34(3), 122–127.

    Article  Google Scholar 

  • Malhotra, J., Sharma, A. K., et al. (2009). On the performance analysis of wireless receiver using generalized-gamma fading model. Annales Des Telecommunications-Annals of Telecommunications, 64(1–2), 147–153.

    Article  Google Scholar 

  • Maple (2011). http://www.maplesoft.com/

  • Mathai, A. M., & Haubold, H. J. (2008). Special functions for applied scientists. New York: Springer Science+Business Media.

    Book  MATH  Google Scholar 

  • Mathai, A. M., & Saxena, R. K. (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Matlab (2011). http://www.mathworks.com/

  • McKay, A. T. (1932). A Bessel distribution function. Biometrika, 24, 39–44.

    Article  MATH  Google Scholar 

  • Mendes, J. R., & Yacoub, M. D. (2007). A general bivariate Ricean model and its statistics. IEEE Transactions on Vehicular Technology, 56(2), 404–415.

    Article  Google Scholar 

  • Nadarajah, S., & Kotz, S. (2006a). Bivariate gamma distributions, sums and ratios. Bulletin of the Brazilian Mathematical Society, New Series, 37, 241–274.

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah, S., & Kotz, S. (2006b). On the bit-error rate for generalized gamma fading channels. IEEE Communications Letters, 10(9), 644–645.

    Article  Google Scholar 

  • Nadarajah, S., & Kotz, S. (2006c). On the product and ratio of gamma and Weibull random variables. Econometric Theory, 22(02), 338–344.

    Article  MathSciNet  MATH  Google Scholar 

  • Nakagami, M. (1960). The m-distribution—A general formula of intensity distribution of rapid fading. In W. C. Hoffman (Ed.), Statistical methods in radio wave propagation. Elmsford, NY: Pergamon.

    Google Scholar 

  • Ohta, M., & Koizumi, T. (1969). Intensity fluctuation of stationary random noise containing an arbitrary signal wave. IEEE Proceedings, 1969(57), 1231–1232.

    Article  Google Scholar 

  • Okui, S., Morinaga, N., & Namekawa, T. (1981). Probability distributions of ratio of fading signal envelopes and their generalizations. Electronics and Communications in Japan, 64-B, 1228–1235.

    Google Scholar 

  • Pahlavan, K., & Levesque, A. (1995). Wireless information networks. New York: Wiley.

    Google Scholar 

  • Pahlavan, K., & Levesque, A. H. (2005). Wireless information networks. Wiley: Hoboken, NJ.

    Book  Google Scholar 

  • Papazafeiropoulos, A. K., & Kotsopoulos, S. A. (2011a). The α−λ−μ and α−η−μ small-scale general fading distributions: A unified approach. WIRE, 57, 735–751.

    Google Scholar 

  • Papazafeiropoulos, A. K., & Kotsopoulos, S. A. (2011b). The a-l-m and a-κ-m small scale general fading distributions: A unified approach. Wireless Personal Communications, 57, 735–751.

    Article  Google Scholar 

  • Papoulis, A., & Pillai, S. U. (2002a). Probability, random variables and stochastic processes (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Papoulis, A., & Pillai, S. U. (2002b). Probability, random variables, and stochastic processes. Boston: McGraw-Hill.

    Google Scholar 

  • Paris, J. F. (2009a). Nakagami-q (Hoyt) distribution function with applications. Electronics Letters, 45(4), 210–211.

    Article  Google Scholar 

  • Paris, J. F. (2009b). Nakagami-q (Hoyt) distribution function with applications (erratum). Electronics Letters, 45(8), 210–211.

    Article  Google Scholar 

  • Patzold, M. (2002). Mobile fading channels. Chichester: Wiley.

    Book  Google Scholar 

  • Peppas, K., Lazarakis, F., Alexandridis, A., & Dankais, K. (2009). Error performance of digital modulation schemes with MRC diversity reception over η-μ fading channels. IEEE Transactions on Wireless Communications, 8(10), 4974–4980.

    Article  Google Scholar 

  • Podolski, H. (1972). The distribution of a product of n independent random variables with generalized gamma distribution. Demonstratio Mathematica, 4(2), 119–123.

    MathSciNet  MATH  Google Scholar 

  • Prabhu, G., & Shankar, P. M. (2002). Simulation of flat fading using MATLAB for classroom instruction. IEEE Transactions on Education, 45(1), 19–25.

    Article  Google Scholar 

  • Proakis, J. G. (2001). Digital communications. Boston: McGraw-Hill.

    MATH  Google Scholar 

  • Radaydeh, R. M., & Matalgah, M. M. (2008). Compact formulas for the average error performance of noncoherent m-ary orthogonal signals over generalized Rician, Nakagami-m, and Nakagami-q fading channels with diversity reception. IEEE Transactions on Communications, 56, 32–38.

    Article  Google Scholar 

  • Rappaport, T. S. (2002). Wireless communications: Principles and practice. Prentice Hall PTR: Upper Saddle River, NJ.

    MATH  Google Scholar 

  • Rohatgi, V. K., & Saleh, A. K. M. E. (2001). An introduction to probability and statistics. New York: Wiley.

    MATH  Google Scholar 

  • Sagias, N. C., & Tombras, G. S. (2007). On the cascaded Weibull fading channel model. Journal of the Franklin Institute, 344(1), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Sagias, N. C., et al. (2004). Channel capacity and second-order statistics in Weibull fading. IEEE Communications Letters, 8(6), 377–379.

    Article  Google Scholar 

  • Sagias, N. C., et al. (2005). New results for the Shannon channel capacity in generalized fading channels. IEEE Communications Letters, 9(2), 97–99.

    Article  Google Scholar 

  • Salo, J., El-Sallabi, H. M., et al. (2006a). The distribution of the product of independent Rayleigh random variables. IEEE Transactions on Antennas and Propagation, 54(2), 639–643.

    Article  MathSciNet  Google Scholar 

  • Salo, J., El-Sallabi, H. M., et al. (2006b). Statistical analysis of the multiple scattering radio channel. IEEE Transactions on Antennas and Propagation, 54(11), 3114–3124.

    Article  MathSciNet  Google Scholar 

  • Selim, B., Alhussein, O., Muhaidat, S., Karagiannidis, G. K., & Liang, J. (2015). Modeling and analysis of wireless channels via the mixture of Gaussian distribution. IEEE Transactions on Vehicular Technology, 65(10), 8309–8321.

    Article  Google Scholar 

  • Shankar, P. (2002a). Introduction to wireless systems. New York: Wiley.

    Google Scholar 

  • Shankar, P. (2002b). Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48(6), 1716–1720.

    Article  Google Scholar 

  • Shankar, P. M. (2004). Error rates in generalized shadowed fading channels. Wireless Personal Communications, 28(3), 233–238.

    Article  Google Scholar 

  • Shankar, P. M. (2005). Outage probabilities in shadowed fading channels using a compound statistical model. IEE Proceedings on Communications, 152(6), 828–832.

    Article  Google Scholar 

  • Shankar, P. M. (2010a). Statistical models for fading and shadowed fading channels in wireless systems: A pedagogical perspective. Wireless Personal Communications, 60, 191–213. doi:10.1007/s11277-010-9938-2.

    Article  Google Scholar 

  • Shankar, P. M. (2010b). A Nakagami-N-gamma model for shadowed fading channels. WIRE, 64, 665–680. doi:10.1007/s11277-010-0211-5.

    Google Scholar 

  • Shankar, P. M. (2011a). Maximal ratio combining in independent identically distributed N∗Nakagami fading channels. IET Proceedings on Communications, 5(3), 320–326.

    Article  Google Scholar 

  • Shankar, P. M. (2011b). Performance of N*Nakagami cascaded fading channels in dual selection combining diversity. In IWCMC 2011.

    Google Scholar 

  • Shankar, P. M. (2012). A Nakagami-N-gamma model for shadowed fading channels. WIRE, 64, 665–680.

    Google Scholar 

  • Shankar, P. M. (2013). A statistical model for the ultrasonic backscattered echo from tissue containing microcalcifications. IEEE Transaction on UFFC, 60, 932–942.

    Article  Google Scholar 

  • Shankar, P. M. (2015). A composite shadowed fading model based on the McKay distribution and Meijer G functions. Wireless Personal Communications, 81(3), 1017–1030.

    Article  Google Scholar 

  • Shankar, P. M. and C. Gentile (2010). Statistical analysis of short term fading and shadowing in ultra-wideband systems. In IEEE International Conference on Communications (ICC) (pp. 1–6).

    Google Scholar 

  • Shankar, P. M., Forsberg, F., & Lown, L. (2003). Statistical modeling of atherosclerotic plaque in carotid B mode images a feasibility study. Ultrasound in Medicine & Biology, 29, 1305–1309.

    Article  Google Scholar 

  • Shepherd, N. H. (1977). Radio wave loss deviation and shadow loss at 900 MHZ. IEEE Transactions on Vehicular Technology, 26(4), 309–313.

    Article  Google Scholar 

  • Shin, H., & Lee, J. H. (2004). Performance analysis of space-time block codes over keyhole Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 53(2), 351–362.

    Article  Google Scholar 

  • Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels. Wiley: Hoboken, NJ.

    Google Scholar 

  • Sklar, B. (2001). Digital communications: Fundamentals and applications. Prentice-Hall PTR: Upper Saddle River, NJ.

    MATH  Google Scholar 

  • de Souza, R. & Yacoub, M. D. (2009). Bivariate Nakagami-q (Hoyt) Distribution. In IEEE International Conference on Communications, 2009. ICC ‘09 (pp. 1–5).

    Google Scholar 

  • Springer, M., & Thompson, W. (1966). The distribution of products of independent random variables. SIAM Journal on Applied Mathematics, 14(3), 511–526.

    Article  MathSciNet  MATH  Google Scholar 

  • Springer, M., & Thompson, W. (1970). The distribution of products of beta, gamma and Gaussian random variables. SIAM Journal on Applied Mathematics, 18(4), 721–737.

    Article  MathSciNet  MATH  Google Scholar 

  • Steele, R. and L. Hanzó (1999). Mobile radio communications: Second and third generation cellular and WATM systems.; Chichester, Wiley

    Book  Google Scholar 

  • Stein, S. (1987). Fading channel issues in system engineering. IEEE Journal on Selected Areas in Communications, 5(2), 68–89.

    Article  Google Scholar 

  • Stuber, G. L. (2002). Principles of mobile communication. New York: Kluwer Academic.

    Google Scholar 

  • Suzuki, H. (1977). A statistical model for urban radio propagation. IEEE Transactions on Communications, 25, 673–680.

    Article  Google Scholar 

  • Talha, B. and Patzold, M. (2007). On the statistical properties of double Rice channels. In Proceedings of 10th International Symposium on Wireless Personal Multimedia Communications, WPMC 2007, Jaipur, India (pp. 517–522).

    Google Scholar 

  • Tellambura, C., & Annamalai, A. (1999). An unified numerical approach for computing the outage probability for mobile radio systems. IEEE Communications Letters, 3(4), 97–99.

    Article  Google Scholar 

  • Tjhung, T. T., & Chai, C. C. (1999). Fade statistics in Nakagami-lognormal channels. IEEE Transactions on Communications, 47(12), 1769–1772.

    Article  Google Scholar 

  • Trigui, I., Laourine, A., et al. (2009). On the performance of cascaded generalized κ fading channels. In Global telecommunications conference, 2009. GLOBECOM 2009 (pp. 1–5). IEEE.

    Google Scholar 

  • Uysal, M. (2005). Maximum achievable diversity order for cascaded Rayleigh fading channels. Electronics Letters, 41(23), 1289–1290.

    Article  Google Scholar 

  • Vaughn, R. A., & Andersen, J. B. (2003). Channels, propagation and antennas for mobile communications. Herts: IEE.

    Book  Google Scholar 

  • Venturini, S., Dominici, F., & Parmigiani, G. (2008). Gamma shape mixtures for heavy-tailed distributions. Annals of Applied Statistics, 2, 756–776.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfram (2011). http://functions.wolfram.com/, Wolfram Research, Inc.

  • Wongtrairat, W., & Supnithi, P. (2009). Performance of digital modulation in double Nakagami-m fading channels with MRC diversity. IEICE Transactions on Communications, E92b(2), 559–566.

    Article  Google Scholar 

  • Wongtrairat, W. et al. (2008). Performance of M-PSK modulation in double Rician fading channels with MRC diversity. In 5th international conference on electrical engineering/electronics, computer, telecommunications and information technology, 2008. ECTI-CON 2008 (Vol. 1, pp. 321–324).

    Google Scholar 

  • Yacoub, M. D. (2000). Fading distributions and co-channel interference in wireless systems. IEEE Magazine Antennas and Propagation, 42(1), 150–159.

    Article  Google Scholar 

  • Yacoub, M. D. (2007a). The alpha-mu distribution: A physical fading model for the Stacy distribution. IEEE Transactions on Vehicular Technology, 56, 27–34.

    Article  Google Scholar 

  • Yacoub, M. D. (2007b). The κ-μ distribution and the η-μ distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.

    Article  Google Scholar 

  • Yacoub, M. D. (2007c). The alpha-mu distribution: A physical fading model for the Stacy distribution. IEEE Transactions on Vehicular Technology, 56(1), 27–34.

    Article  Google Scholar 

  • Yacoub, M. D. (2007d). The kappa-mu distribution and the eta-mu distribution. IEEE Magazine Antennas and Propagation, 49(1), 68–81.

    Article  Google Scholar 

  • Yacoub, M. D., J. E. Vargas et al. (1998). On the statistics of the Nakagami-m signal. In Telecommunications symposium, 1998. ITS ‘98 proceedings (Vol. 2, pp. 377–382). SBT/IEEE International.

    Google Scholar 

  • Yacoub, M. D., et al. (1999). On higher order statistics of the Nakagami-m distribution. IEEE Transactions on Vehicular Technology, 48(3), 790–794.

    Article  Google Scholar 

  • Yacoub, M. D., et al. (2001). Level crossing rate and average fade duration for pure selection and threshold selection diversity-combining systems. International Journal of Communication Systems, 14(10), 897–907.

    Article  MATH  Google Scholar 

  • Yilmaz, F. & Alouini, M. S. (2009). Product of the powers of generalized Nakagami-m variates and performance of cascaded fading channels. In Global telecommunications conference, 2009. GLOBECOM 2009 (pp. 1–5). IEEE.

    Google Scholar 

  • Yilmaz, F., & Alouini, M.-S. (2012). A novel unified expression for the capacity and bit error probability of wireless communication systems over generalized fading channels. IEEE Transactions on Communications, 60, 1862–1876.

    Article  Google Scholar 

  • Yuan, L., Jian, Z., et al. (2008). Simulation of doubly-selective compound K fading channels for mobile-to-mobile communications. In Wireless communications and networking conference, 2008. WCNC 2008 (pp. 1–5). IEEE.

    Google Scholar 

  • Zlatanov, N., et al. (2008). Level crossing rate and average fade duration of the double Nakakagmi-m random process and its applications to MIMO keyhole fading channels. IEEE Communications Letters, 12(11), 1–3.

    Article  Google Scholar 

  • Zogas, D., & Karagiannidis, G. K. (2005). Infinite-series representations associated with the bivariate Rician distribution and their applications. IEEE Transactions on Communications, 53(11), 1790–1794.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

We have seen the flexibility offered through the use of the Meijer G-functions in expressing the density functions, distribution functions, error rates, and outage probabilities. They will also be used extensively in Chaps. 5 and 6 as well. Even though they were introduced in Chap. 2, their properties and functionalities which make them very versatile in the study of communication systems were not discussed. In this section, we will provide an overview of the definition, properties, and characteristics of these functions (Mathai and Saxena 1973; Gradshteyn and Ryzhik 2007; Wolfram 2011). We will also examine the relationship among functions commonly encountered in communications such as the incomplete gamma functions, hypergeometric functions, Bessel functions, error functions, complementary error functions, and the Meijer G-functions. Furthermore, closed form expressions for the error rates in cascaded Nakagami channels will be given in terms of Meijer G-functions.

Most of the software packages such as Maple (Maple 2011), Mathematica (Wolfram 2011), and Matlab (Matlab 2011) provide computations involving Meijer G-functions. Mathematica also provides an excellent resource for understanding the properties of these functions. Additionally, Maple can provide a means to understand the relationships among Meijer G-functions and other functions.

The Meijer G-function G(x) is defined as (Gradshteyn and Ryzhik 2007)

$$ \begin{array}{l}{G}_{p,q}^{m,n}\left(x\left|\begin{array}{l}{a}_1,\dots, {a}_n,\dots, {a}_p\hfill \\ {}{b}_1,\dots, {b}_m,\dots, {b}_q\hfill \end{array}\right.\right)={G}_{p,q}^{m,n}\left(x\left|\begin{array}{l}{a}_p\hfill \\ {}{b}_q\hfill \end{array}\right.\right)\\ {}={G}_{p,q}^{m,n}(x)=G(x)\\ {}=\frac{1}{2\pi j}\int \frac{\prod_{i=1}^m\Gamma \left({b}_i-s\right)\left|{\prod}_{i=1}^m\Gamma \left(1-{a}_i+s\right)\right.}{\prod_{i=m+1}^q\Gamma \left(1-{b}_i+s\right)\left|{\prod}_{i=n+1}^p\Gamma \left({a}_i-s\right)\right.}{x}^s\mathrm{d}s.\end{array} $$
(4.358)

In most of the computational packages, the G(x) function is expressed as (Maple 2011)

$$ \begin{array}{l}{G}_{p,q}^{m,n}\left(x\left|\begin{array}{l}{a}_1,\dots, {a}_n,\dots, {a}_p\hfill \\ {}{b}_1,\dots, {b}_m,\dots, {b}_q\hfill \end{array}\right.\right)=\\ {}\mathrm{MeijerG}\left(\left[\underset{p\kern0.24em \mathrm{terms}}{\underbrace{\left[\underset{n\kern0.24em \mathrm{terms}}{\underbrace{a_1,\kern0.36em {a}_2,\dots, \kern0.36em {a}_n}}\right],\left[\underset{\left(p-n\right)\kern0.24em \mathrm{terms}}{\underbrace{a_{n+1},\kern0.36em {a}_{n+2},\dots, \kern0.36em {a}_p}}\right]}}\right]\right.\left.\left[\underset{q\kern0.24em \mathrm{terms}}{\underbrace{\left[\underset{m\kern0.24em \mathrm{terms}}{\underbrace{b_1,\kern0.36em {b}_2,\dots, \kern0.36em {b}_m}}\right],\left[\underset{\left(q-m\right)\kern0.24em \mathrm{terms}}{\underbrace{a_{m+1},\kern0.36em {a}_{m+2},\dots, \kern0.36em {a}_q}}\right]}}\right],x\right).\end{array} $$
(4.359)

A few properties of Meijer G-functions (Mathai and Saxena 1973; Gradshteyn and Ryzhik 2007; Wolfram 2011)

  1. (a)

    Multiplication G(w) with w k:

$$ {w}^k{G}_{p q}^{mn}\left( w\left|\begin{array}{l}{a}_p\hfill \\ {}{b}_q\hfill \end{array}\right.\right)={G}_{p q}^{mn}\left( w\left|\begin{array}{l}{a}_p+ k\hfill \\ {}{b}_q+ k\hfill \end{array}\right.\right). $$
(4.360)
  1. (b)

    Inversion of the argument

$$ {G}_{p q}^{mn}\left(\frac{1}{w}\left|\begin{array}{l}{a}_p\hfill \\ {}{b}_q\hfill \end{array}\right.\right)={G}_{q p}^{mn}\left( w\left|\begin{array}{l}1-{b}_q\hfill \\ {}1-{a}_p\hfill \end{array}\right.\right). $$
(4.361)
  1. (c)

    Transformations

$$ \begin{array}{ll}{G}_{pq}^{mn}\left(z\left|\begin{array}{c}\hfill {a}_1,\dots, {a}_n,\dots, {a}_p\hfill \\ {}\hfill {b}_1,{b}_1,\dots, {b}_n,\dots, {b}_{q-1},{a}_1\hfill \end{array}\right.\right)\hfill & ={G}_{p-1,q-1}^{m,n-1}\hfill \\ {}\hfill & \times \left(z\left|\begin{array}{c}\hfill {a}_2,\dots, {a}_n,\dots, {a}_p\hfill \\ {}\hfill {b}_1,{b}_2,\dots, {b}_n,\dots, {b}_{q-1}\hfill \end{array}\right.\right),\kern1em n,p,q\ge 1,\hfill \end{array} $$
(4.362)
$$ \begin{array}{ll}{G}_{p+1,q+1}^{m+1,n}\left(z\left|\begin{array}{c}\hfill {a}_1,\dots, {a}_n,\dots, {a}_p,1-r\hfill \\ {}\hfill 0,{b}_1,{b}_2,\dots, {b}_n,\dots, {b}_q\hfill \end{array}\right.\right)\hfill & ={\left(-1\right)}^r{G}_{p+1,q+1}^{m,n+1}\hfill \\ {}\hfill & \times \left(z\left|\begin{array}{c}\hfill 1-r,{a}_1,\dots, {a}_n,\dots, {a}_p\hfill \\ {}\hfill {b}_1,{b}_2,\dots, {b}_n,\dots, {b}_q,1\hfill \end{array}\right.\right),\kern1em r=0,1,2,\dots .\hfill \end{array} $$
(4.363)
  1. (d)

    Differentiation

$$ \begin{array}{c}\frac{\partial {G}_{p,q}^{m,n}\left(x\left|\begin{array}{l}{a}_p\hfill \\ {}{b}_q\hfill \end{array}\right.\right)}{\partial x}=\frac{1}{x}{G}_{p+1,q+1}^{m,n+1}\left(x\left|\begin{array}{l}0,{a}_1,{a}_2,\dots, {a}_n,{a}_{n+1},\dots, {a}_p\hfill \\ {}{b}_1,{b}_2,\dots, {b}_m,1,{b}_{m+1},\dots, {b}_q\hfill \end{array}\right.\right)\\ {}={G}_{p+1,q+1}^{m,n+1}\left(x\left|\begin{array}{l}-1,\left({a}_1-1\right),\left({a}_2-1\right),\dots, \left({a}_n-1\right),\left({a}_{n+1}-1\right),\dots, \left({a}_p-1\right)\hfill \\ {}\left({b}_1-1\right),\left({b}_2-1\right),\dots, \left({b}_m-1\right),0,\left({b}_{m+1}-1\right),\dots, \left({b}_q-1\right)\hfill \end{array}\right.\right),\end{array} $$
(4.364)
$$ \begin{array}{l}\frac{\partial {G}_{p,q}^{m,n}\left(x\left|\begin{array}{l}{a}_p\hfill \\ {}{b}_q\hfill \end{array}\right.\right)}{\partial x}=\left({a}_1-1\right){G}_{p,q}^{m,n}\left(x\left|\begin{array}{l}{a}_1,{a}_2,\dots, {a}_n,{a}_{n+1},\dots, {a}_p\hfill \\ {}{b}_1,{b}_2,\dots, {b}_m,{b}_{m+1},\dots, {b}_q\hfill \end{array}\right.\right)\\ {}={G}_{p,q}^{m,n}\left(x\left|\begin{array}{l}\left({a}_1-1\right),{a}_2,\dots, {a}_n,{a}_{n+1},\dots, {a}_p\hfill \\ {}{b}_1,{b}_2,\dots, {b}_m,{b}_{m+1},\dots, {b}_q\hfill \end{array}\right.\right),\end{array} $$
(4.365)
$$ \frac{\partial \left\{{x}^{\alpha }{G}_{p,q}^{m,n}\left(x\left|\begin{array}{l}{a}_p\hfill \\ {}{b}_q\hfill \end{array}\right.\right)\right\}}{\partial x}={x}^{\alpha -1}{G}_{p+1,q+1}^{m,n+1}\left(x\left|\begin{array}{c}\hfill -\alpha, {a}_1,{a}_2,\dots, {a}_n,{a}_{n+1},\dots, {a}_p\hfill \\ {}\hfill {b}_1,{b}_2,\dots, {b}_m,\left(1-\alpha \right),{b}_{m+1},\dots, {b}_q\hfill \end{array}\right.\right), $$
(4.366)
$$ \frac{\partial^v{G}_{p,q}^{m,n}\left(x\left|\begin{array}{l}{a}_p\hfill \\ {}{b}_q\hfill \end{array}\right.\right)}{\partial {x}^v}=\frac{1}{z^v}{G}_{p+1,q+1}^{m,n+1}\left(x\left|\begin{array}{l}0,{a}_1,{a}_2,\dots, {a}_n,{a}_{n+1},\dots, {a}_p\hfill \\ {}{b}_1,{b}_2,\dots, {b}_m,v,{b}_{m+1},\dots, {b}_q\hfill \end{array}\right.\right). $$
(4.367)
  1. (e)

    Integration

$$ \int {x}^{\beta -1}{G}_{p, q}^{m, n}\left( ax\left|\begin{array}{l}{a}_p\hfill \\ {}{b}_q\hfill \end{array}\right.\right)\mathrm{d} x={x}^{\beta}{G}_{p+1, q+1}^{m, n+1}\left( ax\left|\begin{array}{c}\hfill \left(1-\beta \right),{a}_p\hfill \\ {}\hfill {b}_q,\beta \hfill \end{array}\right.\right), $$
(4.368)
$$ \int {G}_{p, q}^{m, n}\left( x\left|\begin{array}{l}{a}_p\hfill \\ {}{b}_q\hfill \end{array}\right.\right)\mathrm{d} x={G}_{p+1, q+1}^{m, n+1}\left( x\left|\begin{array}{c}\hfill 1,\left({a}_p+1\right)\hfill \\ {}\hfill \left({b}_q+1\right),0\hfill \end{array}\right.\right), $$
(4.369)
$$ \begin{array}{l}\int {G}_{p,q}^{m,n}\left(\lambda x\left|\begin{array}{l}{a}_1,\dots, {a}_n,\dots, {a}_p\hfill \\ {}{b}_1,\dots, {b}_m,\dots, {b}_p\hfill \end{array}\right.\right){G}_{u,v}^{r,s}\left(\beta x\left|\begin{array}{l}{c}_1,\dots, {c}_s,\dots, {c}_u\hfill \\ {}{d}_1,\dots, {d}_r,\dots, {d}_v\hfill \end{array}\right.\right)\mathrm{d}x\\ {}\frac{1}{\lambda }{G}_{q+u,p+v}^{n+r,m+s}\left(\frac{\beta }{\lambda}\left|\begin{array}{l}-{b}_1,\dots, -{b}_m,{c}_1,\dots, {c}_s,\dots, {c}_u,-{b}_{m+1},\dots, -{b}_q\hfill \\ {}-{a}_1,\dots, -{a}_m,{d}_1,\dots, {d}_r,\dots, {d}_v,-{a}_{n+1},\dots, -{a}_q\hfill \end{array}\right.\right).\end{array} $$
(4.370)

Relationships of Meijer G-functions to other functions.

4.1.1 Exponential Functions

$$ \frac{1}{a} \exp \left(-\frac{x}{a}\right)=\frac{1}{a}{G}_{0,1}^{1,0}\left(\frac{x}{a}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 0\hfill \end{array}\right.\right)=\left(\frac{x}{a}\right)\frac{1}{x}{G}_{0,1}^{1,0}\left(\frac{x}{a}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 0\hfill \end{array}\right.\right)=\frac{1}{x}{G}_{0,1}^{1,0}\left(\frac{x}{a}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 1\hfill \end{array}\right.\right). $$
(4.371)

To arrive at the result on the far right-hand side of (4.371), we have made use of the identity in (4.360).

$$ \exp \left(-\frac{x}{a}\right)={G}_{0,1}^{1,0}\left(\frac{x}{a}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 0\hfill \end{array}\right.\right), $$
(4.372)
$$ \exp \left(-\frac{x}{a}\right)={G}_{0,1}^{1,0}\left(-\frac{x}{a}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 0\hfill \end{array}\right.\right), $$
(4.373)
$$ 1- \exp \left(-\frac{x}{a}\right)=1-{G}_{0,1}^{1,0}\left(\frac{x}{a}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 0\hfill \end{array}\right.\right)={G}_{1,2}^{1,1}\left(\frac{x}{a}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 1,0\hfill \end{array}\right.\right). $$
(4.374)

4.1.2 Gaussian Function

$$ \frac{1}{\sqrt{2{\pi \sigma}^2}}{\mathrm{e}}^{-\left({x}^2/2{\sigma}^2\right)}=\frac{1}{\sqrt{2{\pi \sigma}^2}}{G}_{0,1}^{1,0}\left(\frac{x^2}{2{\sigma}^2}\left|\begin{array}{c}\hfill \hfill \\ {}\hfill 0\hfill \end{array}\right.\right). $$
(4.375)

4.1.3 Gaussian Integrals

$$ {\int}_{-\infty}^y\frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2}\right)\;\mathrm{d} x=\frac{1}{2}+\frac{1}{2\sqrt{\pi}}{G}_{1,2}^{1,1}\left(\frac{1}{2}{y}^2\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill \frac{1}{2},0\hfill \end{array}\right.\right),\kern0.6em y>0, $$
(4.376)
$$ \begin{array}{l}{\int}_{-\infty}^y\frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2}\right)\;\mathrm{d} x=\frac{1}{2}+\frac{1}{2\sqrt{\pi}}{G}_{1,2}^{1,1}\left(\frac{1}{2}{y}^2\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill \frac{1}{2},0\hfill \end{array}\right.\right),\kern0.6em y<0,\\ {}\end{array} $$
(4.377)

4.1.4 Complementary Error Functions (for Bit Error Rate Calculations)

$$ \mathrm{erfc}\sqrt{x}=1=\frac{1}{\sqrt{\pi}}{G}_{1,2}^{1,1}\left({x}^2\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill \frac{1}{2},0\hfill \end{array}\right.\right)=\frac{1}{\sqrt{\pi}}{G}_{1,2}^{2,0}\left( x\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill \frac{1}{2},0\hfill \end{array}\right.\right), $$
(4.378)
$$ \frac{1}{2}\mathrm{erfc}\sqrt{x}=\frac{1}{2}\left\{1-\frac{1}{\sqrt{\pi}}{G}_{1,2}^{1,1}\left({x}^2\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill \frac{1}{2},0\hfill \end{array}\right.\right)\right\}, $$
(4.379)
$$ \begin{array}{c}\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{2}\mathrm{erfc}\sqrt{x}\right)=-\frac{1}{2}\frac{1}{\sqrt{\pi x}}{\mathrm{e}}^{-x}=\frac{1}{2}\left(\frac{1}{\sqrt{\pi x}}\right){G}_{0,1}^{1,0}\left(x|0\right)\\ {}=-\left(\frac{1}{2\sqrt{\pi }}\right){G}_{0,1}^{1,0}\left(x\left|-\frac{1}{2}\right.\right),\end{array} $$
(4.380)
$$ Q\left(\sqrt{2\pi}\right)=\frac{1}{2}\mathrm{erfc}\left(\sqrt{z}\right)=\frac{1}{2}\left\{1-\frac{1}{\sqrt{\pi}}{G}_{1,2}^{1,1}\left( x\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill \frac{1}{2},0\hfill \end{array}\right.\right)\right\}. $$
(4.381)

4.1.5 Natural Logarithm

$$ \ln (x)=\left( x-1\right){G}_{2,2}^{1,2}\left(\left( x-1\right)\left|\begin{array}{c}\hfill 0,0\hfill \\ {}\hfill 0,-1\hfill \end{array}\right.\right)={G}_{2,2}^{1,2}\left(\left( x-1\right)\left|\begin{array}{c}\hfill 1,1\hfill \\ {}\hfill 1,0\hfill \end{array}\right.\right), $$
(4.382)
$$ \ln \left(1+ x\right)={xG}_{2,2}^{1,2}\left( x\left|\begin{array}{c}\hfill 0,0\hfill \\ {}\hfill 0,-1\hfill \end{array}\right.\right)={G}_{2,2}^{1,2}\left( x\left|\begin{array}{c}\hfill 1,1\hfill \\ {}\hfill 1,0\hfill \end{array}\right.\right). $$
(4.383)

4.1.6 Bessel Functions

$$ {K}_{m- c}\left( n\frac{x}{Z}\right)=\frac{1}{2}{G}_{2,2}^{1,2}\left(\frac{n^2}{4}{\left(\frac{x}{Z}\right)}^2\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill \frac{1}{2}\left( m- c\right),\frac{1}{2}\left( c- m\right)\hfill \end{array}\right.\right), $$
(4.384)
$$ {K}_{m- c}\left( n\sqrt{\frac{xmc}{Z}}\right)=\frac{1}{2}{G}_{0,2}^{2,0}\left(\frac{n^2}{4}\frac{xmc}{Z}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill \frac{1}{2}\left( m- c\right),\frac{1}{2}\left( c- m\right)\hfill \end{array}\right.\right), $$
(4.385)
$$ {J}_n(ax)={G}_{0,2}^{1,0}\left(\frac{1}{4}{a}^2{x}^2\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill \frac{n}{2},-\frac{n}{2}\hfill \end{array}\right.\right), $$
(4.386)
$$ {I}_n(ax)=\frac{1}{{\left(-1\right)}^{n/2}}{G}_{0,2}^{1,0}\left(-\frac{1}{4}{a}^2{x}^2\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill \frac{n}{2},-\frac{n}{2}\hfill \end{array}\right.\right),\kern0.6em n\ne 0, $$
(4.387)
$$ {I}_0(ax)={G}_{0,2}^{1,0}\left(-\frac{1}{4}{a}^2{x}^2\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 0,0\hfill \end{array}\right.\right). $$
(4.388)

4.1.7 Short-Term Fading Faded Channels

Probability density function of the amplitude (a) in a Nakagami faded channel is

$$ f(a)=2{\left(\frac{m}{Z_0}\right)}^m\frac{a^{2 m-1}}{\Gamma (m)} \exp \left(-\frac{m}{Z_0} a\right)=\frac{2}{a\Gamma (m)}{G}_{0,1}^{1,0}\left(\frac{m}{Z_0}{a}^2\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m\hfill \end{array}\right.\right). $$
(4.389)

Probability density function of the SNR in a Nakagami channel is

$$ \begin{array}{l}f(x)={\left(\frac{m}{Z_0}\right)}^m\frac{x^{m-1}}{\Gamma (m)} \exp \left(-m\frac{x}{Z_0}\right)={\left(\frac{m}{Z_0}\right)}^m\frac{x^{m-1}}{\Gamma (m)}{G}_{0,1}^{1,0}\left(x\frac{x}{Z_0}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 0\hfill \end{array}\right.\right)\\ {}\frac{x^{-1}}{\Gamma (m)}{\left(\frac{mx}{Z_0}\right)}^m{G}_{0,1}^{1,0}\left(m\frac{x}{Z_0}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 0\hfill \end{array}\right.\right)=\frac{1}{\Gamma (m)x}{G}_{0,1}^{1,0}\left(m\frac{x}{Z_0}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m\hfill \end{array}\right.\right).\end{array} $$
(4.390)

To arrive at the result on the far right-hand side of (4.390), we have made use of the identity in (4.360). The average SNR is Z 0.

The cumulative distribution function (CDF) of the SNR can take any one of the several forms expressed below. Note that g(.,.) is the lower incomplete gamma function and G(.,.) is the upper incomplete gamma function (Gradshteyn and Ryzhik 2007). The hypergeometric function is represented by p F q (.).

$$ {\int_0^x\left(\frac{m}{Z_0}\right)}^m\frac{y^{m-1}}{\Gamma (m)} \exp \left(-m\frac{y}{Z_0}\right)\mathrm{d}y=\left\{.\begin{array}{l}\frac{\gamma \left(m,\left( mx/{Z}_0\right)\right)}{\Gamma (m)}=\frac{\Gamma \left(m,\left( mx/{Z}_0\right)\right)}{\Gamma (m)}.\hfill \\ {}\begin{array}{c}\frac{{\left( mx/{Z}_0\right)}^m}{\Gamma (m)}{G}_{0,2}^{1,1}\left(\frac{mx}{Z_0}\left|\begin{array}{c}\hfill 1-m\hfill \\ {}\hfill 0,-m\hfill \end{array}\right.\right)\\ {}=\frac{1}{\Gamma (m)}{G}_{1,2}^{1,1}\left(\frac{mx}{Z_0}\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill m,0\hfill \end{array}\right.\right).\end{array}\hfill \\ {}1-\frac{1}{\Gamma (m)}{G}_{1,2}^{2,0}\left(\frac{m}{Z_0}x\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill 0,m\hfill \end{array}\right.\right)\hfill \\ {}\frac{1}{m\Gamma (m)}{\left(\frac{mx}{Z_0}\right)}^m{}_1{F}_1\left(\left[m\right],\left[1+m\right],-\frac{mx}{Z_0}\right).\hfill \end{array}\right. $$
(4.391)

We can also express the density function of the SNR in a generalized gamma fading channel as

$$ f(z)=\frac{\lambda {z}^{\lambda m-1}}{\Gamma (m){\beta}^m} \exp \left(-\frac{z^{\lambda}}{\beta}\right)=\frac{\lambda}{\Gamma (m) z}{G}_{1,0}^{1,0}\left(\frac{z^{\lambda}}{\beta}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m\hfill \end{array}\right.\right). $$
(4.392)

The density function of the SNR in a Weibull fading channel can be obtained from (4.392) by putting m = 1. The probability density function of the SNR in a Rician faded channel (K 0 is the Rician factor defined earlier) can be expressed as the product of two Meijer G-functions as

$$ \begin{array}{c}f(z)=\frac{K_0+1}{Z_{\mathrm{Ri}}} \exp \left[-{K}_0-\left({K}_0+1\right)\frac{z}{Z_{\mathrm{Ri}}}\right]{I}_0\left(2\sqrt{\frac{K_0\left({K}_0+1\right)}{Z_{\mathrm{Ri}}}}z\right)\\ {}=\left(\frac{\left({K}_0+1\right)}{Z_{\mathrm{Ri}}}\right){G}_{0,1}^{1,0}\left(\left[{K}_0\left({K}_0+1\right)\frac{z}{Z_{\mathrm{Ri}}}\right]\left|\begin{array}{l}-\hfill \\ {}0\hfill \end{array}\right.\right){G}_{0,2}^{1,0}\left(\left[-{K}_0\left({K}_0+1\right)\frac{z}{Z_{\mathrm{Ri}}}\right]\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill 0,0\hfill \end{array}\right.\right)\end{array} $$
(4.393)

4.1.8 Shadowed Fading Channel: Gamma–Gamma PDF or Generalized K PDF

$$ \begin{array}{c}f(z)={\int_0^{\infty}\left(\frac{m}{y}\right)}^m\frac{z^{m-1}}{\Gamma (m)} \exp \left(-m\frac{z}{y}\right)\frac{y^{c-1}}{b^c\Gamma (c)} \exp \left(-\frac{y}{b}\right)\mathrm{d}y\\ {}={\int_0^{\infty}\left(\frac{m}{y}\right)}^m\frac{z^{m-1}}{\Gamma (m)} \exp \left(-m\frac{z}{y}\right)\frac{y^{c-1}}{{\left({Z}_0/c\right)}^c\Gamma (c)} \exp \left(-\frac{y}{\left({Z}_0/c\right)}\right)\mathrm{d}y.\end{array} $$
(4.394)

In terms of Meijer G-functions, (4.394) becomes

$$ f(z)={\int}_0^{\infty}\frac{1}{z\Gamma (m)}{G}_{0,1}^{1,0}\left(\frac{mz}{y}\left|\begin{array}{l}-\hfill \\ {} m\hfill \end{array}\right.\right)\frac{1}{y\Gamma (c)}{G}_{0,1}^{1,0}\left(\frac{y}{\left({Z}_0/ c\right)}\left|\begin{array}{l}-\hfill \\ {} c\hfill \end{array}\right.\right)\mathrm{d} y. $$
(4.395)

The Meijer G-functions in (4.395) can be rewritten using the identities in (4.360) and (4.361) as

$$ {\int}_0^{\infty}\frac{1}{z\Gamma (m)}{G}_{0,1}^{1,0}\left(\frac{mz}{y}\left|\begin{array}{l}-\hfill \\ {} m\hfill \end{array}\right.\right)=\frac{1}{z\Gamma (c)}{G}_{0,1}^{1,0}\left(\frac{y}{mx}\left|\begin{array}{l}1- m\hfill \\ {}-\hfill \end{array}\right.\right), $$
(4.396)
$$ \frac{1}{y\Gamma (m)}{G}_{0,1}^{1,0}\left(\frac{cy}{Z_0}\left|\begin{array}{l}-\hfill \\ {} c\hfill \end{array}\right.\right)=\left(\frac{1}{\Gamma (c)}\right)\frac{1}{\Gamma (c)}{G}_{0,1}^{1,0}\left(\frac{cy}{Z_0}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill c-1\hfill \end{array}\right.\right). $$
(4.397)

Equation (4.395) now becomes

$$ f(z)={\int}_0^{\infty}\frac{1}{z\Gamma (m)}{G}_{0,1}^{1,0}\left(\frac{y}{mz}\left|\begin{array}{c}\hfill 1- m\hfill \\ {}\hfill -\hfill \end{array}\right.\right)\left(\frac{c}{Z_0}\right)\frac{1}{\Gamma (c)}{G}_{0,1}^{1,0}\left(\frac{c y}{Z_0}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill c-1\hfill \end{array}\right.\right)\mathrm{d} y. $$
(4.398)

Using the integral of the product of Meijer G-function given in (4.370), (4.398) becomes

$$ f(z)=\left(\frac{1}{z\Gamma (m)\Gamma (m)}\right)\left( m z\right)\left(\frac{c}{Z_0}\right){G}_{0,2}^{2,0}\left(\frac{mc}{Z_0}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m-1, c-1\hfill \end{array}\right.\right). $$
(4.399)

Using the identity in (4.360), (4.399) becomes

$$ f(z)=\frac{1}{z\Gamma (m)\Gamma (m)}{G}_{0,2}^{2,0}\left(\frac{mc}{Z_0} z\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m, c\hfill \end{array}\right.\right). $$
(4.400)

Using the table of integrals (Gradshteyn and Ryzhik 2007), (4.394) becomes

$$ f(z)=\frac{2}{\Gamma (m)\Gamma (c)}{\left(\frac{ m z}{Z_0}\right)}^{\left( m+ c\right)/2}{z}^{\left(\left( m+ c\right)/2\right)-1}{K}_{m- c}\left(2\sqrt{\frac{ m cz}{Z_0}}\right). $$
(4.401)

The right-hand side of (4.401) can also be obtained from the conversion of Meijer G-function to Bessel functions in (4.385).

CDF of the SNR in a GK channel

$$ \begin{array}{l}{\int}_0^z\frac{2}{\Gamma (m)\Gamma (c)}{\left(\frac{mc}{Z_0}\right)}^{\left(m+c\right)/2}{y}^{\left(\left(m+c\right)/2\right)-1}{K}_{m-c}\left(2\sqrt{\frac{mc y}{Z_0}}\right)\mathrm{d}y\\ {}=\frac{\Gamma \left(m-c\right)}{\Gamma (m)\Gamma \left(c+1\right)}{\left(\frac{mc z}{Z_0}\right)}^c{}_1{F}_2\left(\left[c\right],\left[1+c,1-m+c\right],\frac{mc z}{Z_0}\right)\\ {}+\frac{\Gamma \left(c-m\right)}{\Gamma (c)\Gamma \left(m+1\right)}{\left(\frac{mc z}{Z_0}\right)}^m{}_1{F}_2\left(\left[m\right],\left[1+m,1-c+m\right],\frac{mc z}{Z_0}\right)\\ {}=\frac{\Gamma \left(c-m\right)}{\Gamma (c)\Gamma \left(m+1\right)}\left(\frac{mc z}{Z_0}\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill m,c,0\hfill \end{array}\right.\right).\end{array} $$
(4.402)

4.1.9 Cascaded Channels

Cascaded gamma pdf (non-identical but independent) with

$$ f\left({x}_k\right)=\frac{1}{b_k^{m_k}\Gamma \left({m}_k\right)}{x}_k^{m_k-1} \exp \left(-\frac{x_k}{b_k}\right),\kern1em k=1,2,\dots, N, $$
(4.403)
$$ Z=\prod_{k=1}^N{X}_k, $$
(4.404)
$$ {Z}_0=\prod_{k=1}^N{b}_k{m}_k=\prod_{k=1}^N{m}_k\prod_{k=1}^N{b}_k. $$
(4.405)

The pdf of the cascaded output (SNR) Z

$$ f(x)=\frac{1}{z{\prod}_{k=1}^N\Gamma \left({m}_k\right)}{G}_{0, N}^{N,0}\left(\frac{z{\prod}_{k=1}^N{m}_k}{Z_0}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill {m}_1,{m}_2,\dots, {m}_N\hfill \end{array}\right.\right). $$
(4.406)

CDF of the cascaded output

$$ f(z)=\frac{1}{\prod_{k=1}^N\Gamma \left({m}_k\right)}{G}_{1, N+1}^{N,1}\left(\frac{z{\prod}_{k=1}^N{m}_k}{Z_0}\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill {m}_1,{m}_2,\dots, {m}_N,0\hfill \end{array}\right.\right). $$
(4.407)

For the case of N identical gamma channels,

$$ f(z)=\frac{1}{z\Gamma {(m)}^N}{G}_{0, N}^{N,0}\left(\frac{m^N}{Z_0}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m, m,\dots, m\hfill \end{array}\right.\right), $$
(4.408)
$$ f(z)=\frac{1}{z\Gamma {(m)}^N}{G}_{1, N+1}^{N,1}\left(\frac{m^N}{Z_0}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m, m,\dots, m\hfill \end{array}\right.\right). $$
(4.409)

4.1.10 Laplace Transforms

$$ \begin{array}{c}g(s)={\int}_0^{\infty}\frac{1}{z\Gamma {(m)}^N}{G}_{1,N+1}^{N,1}\left(\frac{m^N}{Z_0}z\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m,m,\dots, m\hfill \end{array}\right.\right) \exp \left(- sz\right)\mathrm{d}z\\ {}=\left(\frac{sZ_0}{m^N}\right)\frac{1}{\Gamma {(m)}^N}{G}_{1,N}^{N,1}\left(\frac{m^N}{sZ_0}\left|\begin{array}{c}\hfill 2\hfill \\ {}\hfill \left(m+1\right),\left(m+1\right),\dots, \left(m+1\right)\hfill \end{array}\right.\right).\end{array} $$
(4.410)

Using the multiplication property from (4.360), the Laplace transform becomes

$$ \begin{array}{c}g(s)={\int}_0^{\infty}\frac{1}{z\Gamma {(m)}^N}{G}_{0,N}^{N,0}\left(\frac{m^N}{Z_0}z\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m,m,\dots, m\hfill \end{array}\right.\right) \exp \left(- sz\right)\mathrm{d}z\\ {}=\frac{1}{\Gamma {(m)}^N}{G}_{1,N}^{N,1}\left(\frac{m^N}{sZ_0}\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill m,m,\dots, m\hfill \end{array}\right.\right).\end{array} $$
(4.411)

For the special case of N = 1 (gamma pdf or Nakagami channel), the Laplace transform simplifies to

$$ g(s)={\int}_0^{\infty}\frac{1}{z\Gamma {(m)}^N}{G}_{0, N}^{N,0}\left(\frac{m}{Z_0} z\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m\hfill \end{array}\right.\right) \exp \left(- sz\right)\mathrm{d} z=\frac{1}{{\left(1+\left({Z}_0/ m\right) s\right)}^m}. $$
(4.412)

4.1.11 Bit Error Rates (Coherent BPSK) for Cascaded Channels

Using the PDF

$$ \begin{array}{c}{\int}_0^{\infty}\frac{1}{2}\mathrm{erfc}\left(\sqrt{z}\right)\frac{1}{\Gamma {(m)}^Nz}{G}_{0,N}^{N,0}\left(\frac{m^Nz}{Z_0}\left|\begin{array}{c}\hfill -\hfill \\ {}\hfill m,m,\dots, m\hfill \end{array}\right.\right)\mathrm{d}z\\ {}=\frac{1}{2}-\frac{1}{2\sqrt{\pi}\Gamma {(m)}^N}{G}_{2,N+1}^{N+1,1}\left(\frac{m^N}{Z_0}\left|\begin{array}{c}\hfill \frac{1}{2},1\hfill \\ {}\hfill 0,m,m,\dots, m\hfill \end{array}\right.\right).\end{array} $$
(4.413)

Using the CDF

$$ \begin{array}{l}{\int}_0^{\infty}\frac{1}{2\sqrt{\pi z}} \exp \left(-1\right)\frac{1}{\Gamma {(m)}^N}{G}_{1,N+1}^{N,1}\left(\frac{m^Nz}{Z_0}\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill m,m,\dots, m\hfill \end{array}\right.\right)\mathrm{d}z\\ {}=\frac{1}{2\sqrt{\pi}\Gamma {(m)}^N}{G}_{2,N+1}^{N,2}\left(\frac{m^N}{Z_0}\left|\begin{array}{c}\hfill \frac{1}{2},1\hfill \\ {}\hfill 0,m,m,\dots, m\hfill \end{array}\right.\right).\end{array} $$
(4.414)

It can be shown through computation that (4.413) and (4.414) lead to the same error rates. For N = 1 (Nakagami channel, SNR ), the bit error rate for coherent BPSK, we have (using the CDF)

$$ \begin{array}{l}{\int}_0^{\infty}\frac{1}{2\sqrt{\pi z}} \exp \left(-z\right)\frac{1}{\Gamma (m)}{G}_{1,2}^{1,1}\left(\frac{mz}{Z_0}\left|\begin{array}{c}\hfill 1\hfill \\ {}\hfill m,0\hfill \end{array}\right.\right)\mathrm{d}z\\ {}=\left(\frac{1}{2\sqrt{\pi }}\right)\frac{\Gamma \left(m+\left(1/2\right)\right)}{m\Gamma (m)}{\left(\frac{m}{Z_0}\right)}^m{}_2{F}_1\left(\left[m,\frac{1}{2}+m\right],\left[1+m\right],-\frac{m}{Z_0}\right)\\ {}=\left(\frac{1}{2\sqrt{\pi }}\right)\frac{1}{\Gamma (m)}{G}_{2,2}^{1,2}\left(\frac{m}{Z_0}\left|\begin{array}{c}\hfill 1,\frac{1}{2}\hfill \\ {}\hfill m,0\hfill \end{array}\right.\right)\end{array} $$
(4.415)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shankar, P.M. (2017). Modeling of Fading and Shadowing. In: Fading and Shadowing in Wireless Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-53198-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53198-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53197-7

  • Online ISBN: 978-3-319-53198-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics