Skip to main content

Metabolic Association Between the Gut–Brain Axis in Autism Spectrum Disorders

  • Chapter
  • First Online:
Book cover Psychiatry and Neuroscience Update - Vol. II

Abstract

Autism spectrum disorder (ASD) is a severe, complex neurodevelopmental disorder, characterized by impairments in social interaction and communication with restricted and stereotyped behavior patterns. ASD symptoms result from a complex interaction between genetic and environment factors. Food intolerances, allergies, altered intestinal permeability (leaky gut), immune dysregulation, neuroinflammation and oxidative stress may trigger ASD symptoms. ASD patients have shown increased urinary levels of β-casomorphin and gliadorphin peptides produced by incomplete digestion of gluten proteins and milk casein. “Leaky gut” may facilitate the transport of these peptides into the central nervous system (CNS) inducing direct “opioid activity” and thus affecting neurotransmission. ASD patients on gluten and/or casein-free diet have shown improvement in most behavior and cognitive scores. Immune dysregulation leads to a neuroinflammatory response that correlates between immune dysfunction with behavioral and cognitive impairments in ASD patients. Genetic variants of the MET gene (7q31.2) are risk factors for ASD. The MET receptor participates in brain cortex and cerebellum development and in gastrointestinal and immunological functions. A high percentage of ASD children have shown non-celiac gluten sensitivity, an immune reaction against gluten in subjects not affected with celiac disease with prominent mucosal eosinophil infiltration and increased blood eosinophilia. ASD patients have shown alterations in brain anatomy involved in language and social interaction skills, correlating with specific aspects of ASD symptoms. ASD behavior results from abnormal interactions between the opioid system and various pathways together with anatomical alterations in the CNS. Individualized diagnosis and prognostic predictions should provide effective personalized therapies in ASD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC, Pickles A, Rutter M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.

    Article  CAS  PubMed  Google Scholar 

  2. Christensen DL, Baio J, Van Naarden BK, Bilder D, Charles J, Constantino JN, Daniels J, Durkin MS, Fitzgerald RT, Kurzius-Spencer M, Lee LC, Pettygrove S, Robinson C, Schulz E, Wells C, Wingate MS, Zahorodny W, Yeargin-Allsopp M. Centers for disease control and prevention (CDC). Prevalence and characteristics of autism spectrum disorder among children aged 8 years-Autism and Developmental isabilities onitoring Network, 11 sites, United States, 2012. MMWR Surveill Summ. 2016;65(3):1–23.

    Article  PubMed  Google Scholar 

  3. Volkmar F, Chawarska K, Klin A. Autism in infancy and early childhood. Annu Rev Psychol. 2005;56:315–36.

    Article  PubMed  Google Scholar 

  4. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med. 1995;25:63–77.

    Article  CAS  PubMed  Google Scholar 

  5. Grafodatskaya D, Chung B, Szatmari P, Weksberg R. Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry. 2010;49:794–809.

    Article  PubMed  Google Scholar 

  6. Cade R, Private FM, Rowland N, Sun Z, Zele V, Wagemaker H, Edelstein C. Autism and schizophrenia: intestinal disorders. Nutr Neurosci. 2000;3:57–72.

    Article  CAS  PubMed  Google Scholar 

  7. Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, Manning-Courtney P, Altaye M, Wills-Karp M. Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol. 2006;172(1):198–205.

    Article  CAS  PubMed  Google Scholar 

  8. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry. 2010;68(4):368–76.

    Article  PubMed  Google Scholar 

  9. Williams BL, Hornig M, Parekh T, Lipkin WI. Application of novel PCR based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio. 2012;3(1):e00261–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chauhan A, Audhya T, Chauhan V. Brain region-specific glutathione redox imbalance in autism. Neurochem Res. 2012;37(8):1681–9.

    Google Scholar 

  11. Pellicano E. Do autistic symptoms persist across time? Evidence of substantial change in symptomatology over a 3-year period in cognitively able children with autism. Am J Intellect Dev Disabil. 2012;17(2):156–66.

    Article  Google Scholar 

  12. Fein D, Barton M, Eigsti IM, Kelley E, Naigles L, Schultz RT, Stevens M, Helt M, Orinstein A, Rosenthal M, Troyb E, Tyson K. Optimal outcome in individuals with a history of autism. J Child Psychol Psychiatry. 2013;54(2):195–205.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eriksson MA, Westerlund J, Hedvall Å, Åmark P, Gillberg C, Fernell E. Medical conditions affect the outcome of early intervention in preschool children with autism spectrum disorders. Eur Child Adolesc Psychiatry. 2013;22(1):23–33.

    Google Scholar 

  14. Dohan FC. Cereals and schizophrenia data and hypothesis. Acta Psychiatr Scand. 1966;42:125–52.

    Article  CAS  PubMed  Google Scholar 

  15. Reichelt KL, Hole K, Hamberger A, Saelid G, Edmminson PD, Braestrup CB, Lingjaerde O, Ledall P, Orbeck H. Biological active peptide containing fractions in schizophrenia and childhood autism. Adv Biochem Psychopharmacol. 1981;28:627–43.

    CAS  PubMed  Google Scholar 

  16. Travé Rodriguez AL, Barreiro Marin P, Gálvez Borrero IM, del Olmo R-NF, Díaz ÁA. Association between autism and schizophrenia. J Nerv Ment Dis. 1994;182(8):478–9.

    Article  PubMed  Google Scholar 

  17. Gardner MLG. Absorption of intact proteins and peptides. In: Johnson LR, editor. Physiology of the gastro-intestinal tract. New York: Raven Press; 1994. p. 1795–820.

    Google Scholar 

  18. D’Eufemia P, Celli M, Finocchiaro R, Pacifico L, Viozzi L, Zaccagnini M, Cardi E, Giardini O. Abnormal intestinal permeability in children with autism. Acta Paediatr. 1996;85:1076–9.

    Article  PubMed  Google Scholar 

  19. de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, Carteni M, De Rosa M, Francavilla R, Riegler G, Militerni R, Bravaccio C. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr. 2010;51(4):418–24.

    Article  PubMed  Google Scholar 

  20. Goodwin MS, Cowen MA, Goodwin TC. Malabsorption and cerebral dysfunction. A multivariate and comparative study of autistic children. J Autism Child Schizophr. 1971;1:48–62.

    Article  CAS  PubMed  Google Scholar 

  21. Coleman M. Calcium studies and their relationship to coeliac disease in autistic patients. In: Colema M, editor. The autistic syndromes. Amsterdam: North Holland Publishing Corp; 1976. p. 197–205.

    Google Scholar 

  22. Buie T, Fuchs 3rd GJ, Furuta GT, Kooros K, Levy J, Lewis JD, Wershil BK, Winter H. Recommendations for evaluation and treatment of common gastrointestinal problems in children with ASDs. Pediatrics. 2010;125(Suppl 1):S19–29.

    Article  PubMed  Google Scholar 

  23. Gorrindo P, Williams KC, Lee EB, Walker LS, McGrew SG, Levitt P. Gastrointestinal dysfunction in autism: parental report, clinical evaluation, and associated factors. Autism Res. 2012;5(2):101–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics. 2014;133(5):​872–83.

    Article  PubMed  Google Scholar 

  25. Kanner L. Follow-up study of eleven autistic children originally reported in 1943. J Autism Child Schizophr. 1971;1(2):119–45.

    Article  CAS  PubMed  Google Scholar 

  26. Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W. Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr. 2011;11:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun Z, Cade JR, Fregly MJ, Privette RM. β-Casomorphin induces fos-like immunoreactivity in discrete brain regions relevant to schizophrenia and autism. Autism. 1999;3(1):67–83.

    Article  Google Scholar 

  28. Sun Z, Cade R. A peptide found in schizophrenia and autism causes behavioral changes in rats. Autism. 1999;3(1):85–95.

    Article  Google Scholar 

  29. Panksepp J. A neurochemical theory of autism. Trends Neurosci. 1979;2:174–7.

    Article  Google Scholar 

  30. Reichelt KL, Knivsberg AM, Nodland M, Lind G. Nature and consequence of hyperpeptiduria and bovine casomorphine found in autistic Syndromes. Brain Dysfunction. 1994;7:71–85.

    Google Scholar 

  31. Reichelt KL, Knivsberg AM. Can the pathophysiology of autism be explained by the nature of the discovered urine peptides? Nutr Neurosci. 2003;6:19–28.

    Article  CAS  PubMed  Google Scholar 

  32. Reichelt KL, Tveiten D, Knivsberg AM, Brønstad G. Peptides: role in autism with emphasis on exorphins. Microb Ecol Health Dis. 2012;24:23.

    Google Scholar 

  33. Millward C, Ferriter M, Calver S, Connell-Jones G. Gluten- and casein-free diets for autistic spectrum disorder. Cochrane Database Syst Rev. 2008;16(2):​CD003498.

    Google Scholar 

  34. Reichelt KL, Ekrem J, Scott H. Gluten, milk proteins and autism: dietary intervention effects on behavior and peptide secretion. J Appl Nutr. 1990;42(1):​1–11.

    Google Scholar 

  35. Lucarelli S, Frediani T, Zingoni AM, Ferruzzi F, Giardini O, Quintieri F, Barbato M, D’Eufemia P, Cardi E. Food allergy and infantile autism. Panminerva Med. 1995;37(3):137–41.

    CAS  PubMed  Google Scholar 

  36. Whiteley P, Rodgersa J. Gluten-free diet as an intervention for autism and associated spectrum disorders: preliminary findings. Autism. 1999;3(1):45.

    Article  Google Scholar 

  37. Whiteley P, Shattock P. Biochemical aspects in autism spectrum disorders: updating the opioid-excess theory and presenting new opportunities for biomedical intervention. Expert Opin Ther Targets. 2002;6(2):175–83.

    Article  PubMed  Google Scholar 

  38. Knivsberg AM, Reichelt KL, Høien T, Nødland M. A randomised, controlled study of dietary intervention in autistic syndromes. Nutr Neurosci. 2002;5(4):251–61.

    Article  CAS  PubMed  Google Scholar 

  39. Pedersen L, Parlar S, Kvist K, Whiteley P, Shattock P. Data mining the ScanBrit study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders: behavioural and psychometric measures of dietary response. Nutr Neurosci. 2014;17(5):207–13.

    Article  CAS  PubMed  Google Scholar 

  40. Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M, Martin CL, Ledbetter DH, Nelson SF, Cantor RM, Geschwind DH. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet. 2008;82(1):150–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ, Almonte AG, Miller BH, Wiltgen BJ, Miller CA, Xu X, Rumbaugh G. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell. 2012;151(4):709–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39(1):25–7.

    Article  CAS  PubMed  Google Scholar 

  43. Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147(1):235–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Piggot J, Shirinyan D, Shemmassian S, Vazirian S, Alarcón M. Neural systems approaches to the neurogenetics of autism spectrum disorders. Neuroscience. 2009;164(1):247–56.

    Article  CAS  PubMed  Google Scholar 

  45. Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, Südhof TC. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science. 2007;318(5847):​71–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yashiro K, Riday TT, Condon KH, Roberts AC, Bernardo DR, Prakash R, Weinberg RJ, Ehlers MD, Philpot BD. Ube3a is required for experience-dependent maturation of the neocortex. Nat Neurosci. 2009;12(6):777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ebert DH, Greenberg ME. Activity-dependent neuronal signalling and autism spectrum disorder. Nature. 2013;493(7432):327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2(5):255–67.

    Article  CAS  PubMed  Google Scholar 

  49. Bradke F, Dotti CG. Establishment of neuronal polarity: lessons from cultured hippocampal neurons. Curr Opin Neurobiol. 2000;10(5):574–81.

    Article  CAS  PubMed  Google Scholar 

  50. Mueller BK. Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci. 1999;22:351–88.

    Article  CAS  PubMed  Google Scholar 

  51. Qui S, Aldinger KA, Levitt P. Modeling of autism genetic variations in mice: focusing on synaptic and microcircuit dysfunctions. Dev Neurosci. 2012;​34(2–3):88–100.

    Google Scholar 

  52. IMGSAC. A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International molecular genetic study of autism consortium. Hum Mol Genet. 1998;7(3):571–8.

    Article  Google Scholar 

  53. IMGSAC. Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Hum Mol Genet. 2001;10(9):973–82.

    Article  Google Scholar 

  54. Zhang H, Liu X, Zhang C, Mundo E, Macciardi F, Grayson DR, Guidotti AR, Holden JJ. Reelin gene alleles and susceptibility to autism spectrum disorders. Mol Psychiatry. 2002;7:1012–7.

    Article  CAS  PubMed  Google Scholar 

  55. Yonan AL, Alarcón M, Cheng R, Magnusson PKE, Spence SJ, Palmer AA, Grunn A, Juo SHH, Terwilliger JD, Liu J, Cantor RM, Geschwind DH, Gilliam TC. A genomewide screen of 345 families for autism-susceptibility loci. Am J Hum Genet. 2003;73(4):886–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Persico AM, Napolioni V. Autism genetics. Behav Brain Res. 2013;15:95–112.

    Article  Google Scholar 

  57. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):​29–33.

    Article  CAS  PubMed  Google Scholar 

  58. Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK, Birchmeierl W, Comoglio PM. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J. 1991;10(10):2867–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Peng Y, Huentelman M, Smith C, Qiu S. MET receptor tyrosine kinase as an autism genetic risk factor. Int Rev Neurobiol. 2013;113:135–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Campbell DB, Buie TM, Winter H, Bauman M, Sutcliffe JS, Perrin JM, Levitt P. Distinct genetic risk based on association of MET in families with co-occurring autism and gastrointestinal conditions. Pediatrics. 2009;123(3):1018–24.

    Article  PubMed  Google Scholar 

  61. Campbell DB. When linkage signal for autism MET candidate gene. Eur J Hum Genet. 2009;17(6):​699–700.

    Article  CAS  PubMed  Google Scholar 

  62. Jackson PB, Boccuto L, Skinner C, Collins JS, Neri G, Gurrieri F, Schwartz CE. Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder. Autism Res. 2009;2(4):232–6.

    Article  PubMed  Google Scholar 

  63. Sousa I, Clark TG, Toma C, Kobayashi K, Choma M, Holt R, Sykes NH, Lamb JA, Bailey AJ, Battaglia A, Maestrini E, Monaco AP. MET and autism susceptibility: family and case-control studies. Eur J Hum Genet. 2009;17(6):749–58.

    Article  CAS  PubMed  Google Scholar 

  64. Thanseem I, Nakamura K, Miyachi T, Toyota T, Yamada S, Tsujii M, Tsuchiya KJ, Anitha A, Iwayama Y, Yamada K, Hattori E, Matsuzaki H, Matsumoto K, Iwata Y, Suzuki K, Suda S, Kawai M, Sugihara G, Takebayashi K, Takei N, Ichikawa H, Sugiyama T, Yoshikawa T, Mori N. Further evidence for the role of MET in autism susceptibility. Neurosci Res. 2010;68(2):137–41.

    Article  CAS  PubMed  Google Scholar 

  65. Campbell DB, D’Oronzio R, Garbett K, Ebert PJ, Mirnics K, Levitt P. Persico. Disruption of cerebral cortex MET signaling in autism spectrum disorder. AM. Ann Neurol. 2007;62(3):243–50.

    Article  PubMed  Google Scholar 

  66. Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 1998;8:404–10.

    Article  CAS  PubMed  Google Scholar 

  67. Yang XM, Park M. Expression of the MET/hepatocyte growth factor/scatter factor receptor and its ligand during differentiation of murine P19 embryonal carcinoma cells. Dev Biol. 1993;157:308–20.

    Article  CAS  PubMed  Google Scholar 

  68. Leraci A, Forni PE, Ponzetto C. Viable hypomorphic signaling mutant of the Met receptor reveals a role for hepatocyte growth factor in postnatal cerebellar development. Proc Natl Acad Sci U S A. 2002;99:​15200–5.

    Article  CAS  Google Scholar 

  69. Judson MC, Bergman MY, Campbell DB, Eagleson KL, Levitt P. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J Comp Neurol. 2009;513(5):511–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Judson MC, Eagleson KL, Levitt P. A new synaptic player leading to autism risk: met receptor tyrosine kinase. J Neurodev Disord. 2011;3(3):282–92.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Beilmann M, Odenthal M, Jung W, Vande Woude GF, Dienes HP, Schirmacher P. Neoexpression of the c-met/hepatocyte growth factor-scatter factor receptor gene in activated monocytes. Blood. 1997;90(11):​4450–8.

    CAS  PubMed  Google Scholar 

  72. Tahara Y, Ido A, Yamamoto S, Miyata Y, Uto H, Hori T, Hayashi K, Tsubouchi H. Hepatocyte growth factor facilitates colonic mucosal repair in experimental ulcerative colitis in rats. J Pharmacol Exp Ther. 2003;307(1):146–15.

    Article  CAS  PubMed  Google Scholar 

  73. Ido A, Numata M, Kodama M, Tsubouchi H. Mucosal repair and growth factors: recombinant human hepatocyte growth factor as an innovative therapy for inflammatory bowel disease. J Gastroenterol. 2005;40(10):925–31.

    Article  PubMed  Google Scholar 

  74. Okunishi K, Dohi M, Nakagome K, Tanaka R, Mizuno S, Matsumoto K, Miyazaki J, Nakamura T, Yamamoto K. A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol. 2005;175(7):​4745–53.

    Article  CAS  PubMed  Google Scholar 

  75. Rudie JD, Hernandez LM, Brown JA, Beck-Pancer D, Colich NL, Gorrindo P, Thompson PM, Geschwind DH, Bookheimer SY, Levitt P, Dapretto M. Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron. 2012;75(5):904–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, Elia M, Schneider C, Melmed R, Sacco R, Persico AM, Levitt P. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A. 2006;​103(45):16834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Quigley EM, Hurley D. Autism and the gastrointestinal tract. Am J Gastroenterol. 2000;95(9):2154–6.

    Article  CAS  PubMed  Google Scholar 

  78. Levy SE, Souders MC, Ittenbach RF, Giarelli E, Mulberg AE, Pinto-Martin JA. Relationship of dietary intake to gastrointestinal symptoms in children with autistic spectrum disorders. Biol Psychiatry. 2007;61(4):492–7.

    Article  CAS  PubMed  Google Scholar 

  79. Heuer L, Ashwood P, Schauer J, Goines P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, Pessah IN, Van de Water J. Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Res. 2008;1(5):275–83.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Enstrom A, Krakowiak P, Onore C, Pessah IN, Hertz-Picciotto I, Hansen RL, Van de Water JA, Ashwood P. Increased IgG4 levels in children with autism disorder. Brain Behav Immun. 2009;23(3):​389–95.

    Article  CAS  PubMed  Google Scholar 

  81. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain, Behav Immu. 2011;25(1):40–5.

    Article  CAS  Google Scholar 

  82. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M. Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009;207(1):111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, Li X. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation. 2011;8(1):52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, West AB, Arking DE. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun. 2014;5:5748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Boris M, Kaiser CC, Goldblatt A, Elice MW, Edelson SM, Adams JB, Feinstein DL. Effect of pioglitazone treatment on behavioral symptoms in autistic children. J Neuroinflammation. 2007;4:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sharma A, Gokulchandran N, Chopra G, Kulkarni P, Lohia M, Badhe P, Jacob VC. Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life. Cell Transplant. 2012;21(Supplement 1):S79–90.

    Article  PubMed  Google Scholar 

  87. Schmitt J, Romanos M, Pfennig A, Leopold K, Meurer M. Psychiatric comorbidity in adult eczema. Br J Dermatol. 2009;161(4):878–83.

    Article  CAS  PubMed  Google Scholar 

  88. Kohane IS, McMurry A, Weber G, MacFadden D, Rappaport L, Kunkel L, Bickel J, Wattanasin N, Spence S, Murphy S, Churchill S. The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS One. 2012;7(4):e33224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fasmer OB, Riise T, Eagan TM, Lund A, Dilsaver SC, Hundal O, Oedegaard KJ. Comorbidity of asthma with ADHD. J Atten Disord. 2011;15(7):​564–71.

    Article  PubMed  Google Scholar 

  90. Millman M, Campbell MB, Wright KL, Johnston A. Allergy and learning disabilities in children. Ann Allergy. 1976;36(3):149–60.

    CAS  PubMed  Google Scholar 

  91. Price CE, Rona RJ, Chinn S. Associations of excessive irritability with common illnesses and food intolerance. Paediatr Perinat Epidemiol. 1990;4(2):​156–60.

    Article  CAS  PubMed  Google Scholar 

  92. Angelidou A, Alysandratos KD, Asadi S, Zhang B, Francis K, Vasiadi M, Kalogeromitros D, Theoharides TC. Brief report: “allergic symptoms” in children with autism spectrum disorders. More than meets the eye? J Autism Dev Disord. 2011;41(11):1579–85.

    Article  PubMed  Google Scholar 

  93. Theoharides TC, Enakuaa S, Sismanopoulos N, Asadi S, Papadimas EC, Angelidou A, Alysandratos KD. Contribution of stress to asthma worsening through mast cell activation. Ann Allergy Asthma Immunol. 2012;109(1):14–9.

    Article  PubMed  Google Scholar 

  94. Scaccianoce S, Lombardo K, Nicolai R, Affricano D, Angelucci L. Studies on the involvement of histamine in the hypothalamic–pituitary–adrenal axis activation induced by nerve growth factor. Life Sci. 2000;67(26):3143–52.

    Article  CAS  PubMed  Google Scholar 

  95. Kalogeromitros D, Syrigou EK, Makris M, Kempuraj D, Stavrianeas NG, Vasiadi M, Theoharides TC. Nasal provocation of patients with allergic rhinitis and the hypothalamic–pituitary–adrenal axis. Ann Allergy Asthma Immunol. 2007;98(3):269–73.

    Article  CAS  PubMed  Google Scholar 

  96. Liezmann C, Klapp B, Peters EM. Stress, atopy and allergy: a re-evaluation from a psychoneuroimmunologic persepective. Dermatoendocrinol. 2011;3(1):​37–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jyonouchi H. Autism spectrum disorders and allergy: observation from a pediatric allergy/immunology clinic. Expert Rev Clin Immunol. 2010;6(3):​397–411.

    Article  PubMed  Google Scholar 

  98. Catassi C, Bai JC, Bonaz B, Bouma G, Calabrò A, Carroccio A, Castillejo G, Ciacci C, Cristofori F, Dolinsek J, Francavilla R, Elli L, Green P, Holtmeier W, Koehler P, Koletzko S, Meinhold C, Sanders D, Schumann M, Schuppan D, Ullrich R, Vécsei A, Volta U, Zevallos V, Sapone A, Fasano A. Non-celiac gluten sensitivity: the new frontier of gluten-related disorders. Nutrients. 2013;5(10):3839–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Fasano A, Sapone A, Zevallos V, Schuppan D. Nonceliac gluten sensitivity. Gastroenterology. 2015;148(6):1195–204.

    Article  CAS  PubMed  Google Scholar 

  100. Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A. Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med. 2012;10:13.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sandler RH, Finegold SM, Bolte ER, Buchanan CP, Maxwell AP, Väisänen ML, Nelson MN, Wexler HM. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol. 2000;15(7):429–35.

    Article  CAS  PubMed  Google Scholar 

  102. Schieve LA, Gonzalez V, Boulet SL, Visser SN, Rice CE, Van Naarden BK, Boyle CA. Concurrent medical conditions and health care use and needs among children with learning and behavioral developmental disabilities, National Health Interview Survey, 2006-2010. Res Dev Disabil. 2011;33(2):467–76.

    Article  PubMed  Google Scholar 

  103. Carroccio A, Mansueto P, Iacono G, Soresi M, D’Alcamo A, Cavataio F, Brusca I, Florena AM, Ambrosiano G, Seidita A, Pirrone G, Rini GB. Non-celiac wheat sensitivity diagnosed by double-blind placebo-controlled challenge: exploring a new clinical entity. Am J Gastroenterol. 2012;107(12):​1898–906.

    Article  PubMed  Google Scholar 

  104. Ashwood P, Anthony A, Pellicer AA, Torrente F, Walker-Smith JA, Wakefield AJ. Intestinal lymphocyte populations in children with regressive autism: evidence for extensive mucosal immunopathology. J ClinImmunol. 2003;23(6):504–17.

    Google Scholar 

  105. Chen B, Girgis S, El-Matary W. Childhood autism and eosinophilic colitis. Digestion. 2010;81(2):​127–9.

    Article  PubMed  Google Scholar 

  106. Courchesne E, Campbell K, Solso S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res. 2011;1380:​138–45.

    Article  CAS  PubMed  Google Scholar 

  107. Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J. Mapping early brain development in autism. Neuron. 2007;56(2):399–413.

    Article  CAS  PubMed  Google Scholar 

  108. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137–45.

    Article  CAS  PubMed  Google Scholar 

  109. Catani M, Dell’Acqua F, Budisavljevic S, Howells H, Thiebaut de Schotten M, Froudist-Walsh S, D’Anna L, Thompson A, Sandrone S, Bullmore ET, Suckling J, Baron-Cohen S, Lombardo MV, Wheelwright SJ, Chakrabarti B, Lai MC, Ruigrok AN, Leemans A, Ecker C, Consortium MA, Craig MC, Murphy DG. Frontal networks in adults with autism spectrum disorder. Brain. 2016;139(Pt 2):​616–30.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zioudrou C, Streaty RA, Klee WA. Opioid peptides derived from food proteins The exorphins. J Biol Chem. 1979;254(7):2446–9.

    CAS  PubMed  Google Scholar 

  111. Huebner FR, Lieberman KW, Rubino RP, Wall JS. Demonstration of high opioid-like activity in isolated peptides from wheat gluten hydrolysates. Peptides. 1984;5(6):1139–47.

    Article  CAS  PubMed  Google Scholar 

  112. van Elst LT, Maier S, Fangmeier T, Endres D, Mueller GT, Nickel K, Ebert D, Lange T, Hennig J, Biscaldi M, Riedel A, Perlov E. Magnetic resonance spectroscopy comparing adults with high functioning autism and above average IQ. Mol Psychiatry. 2014;19(12):1251.

    Article  PubMed  Google Scholar 

  113. Siggins GR, Henriksen SJ, Chavkin C, Gruol D. Opioid peptides and epileptogenesis in the limbic system: cellular mechanisms. Adv Neurol. 1986;​44:501–12.

    CAS  PubMed  Google Scholar 

  114. Wagner R, DeLeo JA, Coombs DW, Willenbring S, Fromm C. Spinal dynorphin immunoreactivity increases bilaterally in a neuropathic pain model. Brain Res. 1993;629(2):323–6.

    Article  CAS  PubMed  Google Scholar 

  115. Simmons ML, Chavkin C. Endogenous opioid regulation of hippocampal function. Int Rev Neurobiol. 1996;39:145–96.

    Article  CAS  PubMed  Google Scholar 

  116. Henriksen G, Willoch F. Imaging of opioid receptors in the central nervous system. Brain. 2008;131(Pt 5):1171–96.

    Article  PubMed  Google Scholar 

  117. Zagon IS, Gibo DM, McLaughlin PJ. Adult and developing human cerebella exhibit different profiles of opioid binding sites. Brain Res. 1990;523:62–8.

    Article  CAS  PubMed  Google Scholar 

  118. Zagon IS, McLaughlin PJ. Opioid growth factor receptor in the developing nervous system: laboratory findings. In: Zagon IS, McLaughlin PJ, editors. Receptors and the developing nervous system, Growth Factors and Hormones, vol. L. London: Chapman and Hall; 1993. p. 39–62.

    Chapter  Google Scholar 

  119. Froehlich JC. Opioid peptides. Alcohol Health Res World. 1997;21(2):132–6.

    CAS  PubMed  Google Scholar 

  120. Teschemacher H. Opioid receptor ligands derived from food proteins. Curr Pharm Des. 2003;9(16):​1331–44.

    Article  CAS  PubMed  Google Scholar 

  121. Doty RW. Schizophrenia: a disease of interhemispheric processes at forebrain and brainstem levels? Behav Brain Res. 1989;34(1–2):1–33.

    Article  CAS  PubMed  Google Scholar 

  122. Sher L. Autistic disorder and the endogenous opioid system. Med Hypotheses. 1997;48(5):413–4.

    Article  CAS  PubMed  Google Scholar 

  123. Lajonchere C, Jones N, Coury DL, Perrin JM. Leadership in health care, research, and quality improvement for children and adolescents with autism spectrum disorders: autism treatment network and autism intervention research network on physical health. Pediatrics. 2012;130(Suppl 2):​S62–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Andrea Delgado PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Delgado, M.A., Fochesato, A., Juncos, L.I., Gargiulo, P.Á. (2017). Metabolic Association Between the Gut–Brain Axis in Autism Spectrum Disorders. In: Gargiulo, P., Mesones-Arroyo, H. (eds) Psychiatry and Neuroscience Update - Vol. II. Springer, Cham. https://doi.org/10.1007/978-3-319-53126-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53126-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53125-0

  • Online ISBN: 978-3-319-53126-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics