Skip to main content

Emerging Role of ncRNAs in Cancer Biology: Techniques for Diagnostic Monitoring and Potential ncRNA-Based Therapies

  • Chapter
  • First Online:
Molecular Oncology: Underlying Mechanisms and Translational Advancements

Abstract

In the last 10 years, the discovery that the human genome is able to generate a large number of RNAs non coding for proteins (ncRNAs) has changed our way to approach the understanding and studying of biology. In particular, the discovery of several Long ncRNAs (lncRNAs) and microRNAs (miRNAs) with tumor suppressor or oncogenic function, opened new horizons in molecular oncology research, diagnosis and potential therapies.

Cancer types need to be differentiated by cell type of origin, histological features and genes expression. In addition, it has been recently demonstrated the power of lncRNA signatures in diagnosis of many types of cancer and in the prediction of patients survival.

As oncogenic ncRNAs may support survival of the transformed cells, thus leading to therapy resistance, ncRNA silencing therapies could be a valuable approach to be associated with anticancer drugs and chemotherapy treatments.

Blocking of oncomiR may be achieved by introduction of miRNA sponges with multiple complementary sequences, by antisense oligonucleotides, anti-microRNA sequences (with modified oligonucleotides such as locked nucleic acids, phosphorothioate backbone sequences preventing the cleavage, and 2-O-methoxyethyl modified sequences) named antagomirs. On the other hand, detection of deregulated lncRNAs in tumors as diagnostic biomarkers start to be used in the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chakravarthi BV, Nepal S, Varambally S (2016) Genomic and epigenomic alterations in cancer. Am J Pathol 186(7):1724–1735. doi:10.1016/j.ajpath.2016.02.023. Review

    Article  CAS  PubMed  Google Scholar 

  2. Gao C, He Z, Li J, Li X, Bai Q, Zhang Z, Zhang X, Wang S, Xiao X, Wang F, Yan Y, Li D, Chen L, Zeng X, Xiao Y, Dong G, Zheng Y, Wang Q, Chen W (2016) Specific long non-coding RNAs response to occupational PAHs exposure in coke oven workers. Toxicol Rep 3:160–166

    Article  CAS  Google Scholar 

  3. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67(3):876–880

    Article  CAS  PubMed  Google Scholar 

  4. Ishikawa T, Miwa M, Uchida K (2006) Quantitation of thyroid peroxidase mRNA in peripheral blood for early detection of thyroid papillary carcinoma. Thyroid 16:435–442

    Article  CAS  PubMed  Google Scholar 

  5. D’Urso IP, D’Urso OF, Gianfreda DC, Mezzolla V, Storelli C, Marsigliante S (2015) miR-15b and miR-21 as circulating biomarkers for diagnosis of glioma. Curr Genomics 16(5):304–311. doi:10.2174/1389202916666150707155610

    Article  Google Scholar 

  6. Poltronieri P, D’Urso PI, Mezzolla V, D’Urso OF (2013) Potential of anti-cancer therapy based on anti-miR-155 oligonucleotides in glioma and brain tumours. Chem Biol Drug Des 81:79–84

    Article  CAS  PubMed  Google Scholar 

  7. Esquela-Kerscher A, Slack FJ (2006) OncomiRs-microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  8. Gibb EA, Vucic EA, Enfield KSS, Stewart GL, Lonergan KM, Kennett JY, Becker-Santos DD, MacAulay CE, Lam S, Brown CJ, Lam WL (2011) Human cancer long non-coding RNA transcriptomes. PLoS One 6(10):e25915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langerød A, Børresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Y, Li H, Hu B, Liu J, Wang J (2013) The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One 8(5):65309

    Article  Google Scholar 

  11. Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, MĂ¼ller-Tidow C (2003) MALAT-1, a novel noncoding RNA, and thymosin bold italic beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041. doi:10.1038/sj.onc.1206928

    Article  PubMed  Google Scholar 

  12. Ren S, Wang F, Shen J, Sun Y, Xu W, Lu J, Wei M, Xu C, Wu C, Zhang Z, Gao X, Liu Z, Hou J, Huang J, Sun Y (2013) Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer 49:2949–2959

    Article  CAS  PubMed  Google Scholar 

  13. Ren S, Liu Y, Xu W, Sun Y, Lu J, Wang F, Wei M, Shen J, Hou J, Gao X, Xu C, Huang J, Zhao Y, Sun Y (2013) Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol 190(6):2278–2287

    Article  CAS  PubMed  Google Scholar 

  14. Ma KX, Wang HJ, Li XR, Li T, Su G, Yang P, Wu JW (2015) Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. Tumour Biol 36(5):3355–3359

    Article  CAS  PubMed  Google Scholar 

  15. Malek E, Jagannathan S, Driscoll JJ (2014) Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget 5(18):8027–8038

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076. doi:10.1038/nature08975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo Q, Cheng Y, Liang T, He Y, Ren C, Sun L, Zhang G (2015) Comprehensive analysis of lncRNA-mRNA co-expression patterns identifies immune-associated lncRNA biomarkers in ovarian cancer malignant progression. Sci Rep 5:17683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo LL, Song CH, Wang P, Dai LP, Zhang JY, Wang KJ (2015) Competing endogenous RNA networks and gastric cancer. World J Gastroenterol 21(41):11680–11687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mar-Aguilar F, Mendoza-Ramirez JA, MalagoĂ²n-Santiago I, Espino-Silva PK, Santuario-Facio SK, Ruiz-Flores P, Rodriguez-Padilla C, Resendez-Perez D (2013) Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Markers 34:163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, Calatayud D, Nielsen SE, Yilmaz M, Holländer NH, Andersen KK, Johansen JS (2014) MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA 311(4):392–404. doi:10.1001/jama.2013.284664

    Article  CAS  PubMed  Google Scholar 

  21. Zhu X, Lv M, Wang H, Guan W (2014) Identification of circulating microRNAs as novel potential biomarkers for gastric cancer detection: a systematic review and meta-analysis. Dig Dis Sci 59(5):911–919. doi:10.1007/s10620-013-2970-9. Review

    Article  CAS  PubMed  Google Scholar 

  22. Mallardo M, Poltronieri P, D’Urso OF (2008) Non-protein coding RNA biomarkers and differential expression in cancers. A review. J Exp Clin Cancer Res 27:19

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hashim A, Rizzo F, Marchese G, Ravo M, Tarallo R, Nassa G, Giurato G, Santamaria G, Cordella A, Cantarella C, Weisz A (2014) RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget 5(20):9901–9910

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ravo M, Cordella A, Rinaldi A, Bruno G, Alexandrova E, Saggese P, Nassa G, Giurato G, Tarallo R, Marchese G, Rizzo F, Stellato C, Biancardi R, Troisi J, Di Spiezio Sardo A, Zullo F, Weisz A, Guida M (2015) Small non-coding RNA deregulation in endometrial carcinogenesis. Oncotarget 6(7):4677–4691

    Article  PubMed  PubMed Central  Google Scholar 

  25. Giurato G, De Filippo MR, Rinaldi A, Hashim A, Nassa G, Ravo M, Rizzo F, Tarallo R, Weisz A (2013) iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq. BMC Bioinformatics 14:362. doi:10.1186/1471-2105-14-362

    Article  PubMed  PubMed Central  Google Scholar 

  26. Concepcion CP, Bonetti C, Ventura A (2012) The miR-17-92 family of microRNA clusters in development and disease. Cancer J 18(3):262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mendell JT (2008) miRiad Roles for the miR-17-92 cluster in development and disease. Cell 133:217–222. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    Article  CAS  PubMed  Google Scholar 

  29. Paris O, Ferraro L, Grober OM, Ravo M, De Filippo MR, Giurato G, Nassa G, Tarallo R, Cantarella C, Rizzo F, Di Benedetto A, Mottolese M, Benes V, Ambrosino C, Nola E, Weisz A (2012) Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer. Oncogene 31(38):4196–4206

    Article  CAS  PubMed  Google Scholar 

  30. Ferracin M, Negrini M (2015) Micromarkers 2.0: an update on the role of microRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn 15(10):1369–1381

    Article  CAS  PubMed  Google Scholar 

  31. Mangolini A, Ferracin M, Zanzi MV, Saccenti E, Ebnaof SO, Poma VV, Sanz JM, Passaro A, Pedriali M, Frassoldati A, Querzoli P, Sabbioni S, Carcoforo P, Hollingsworth A, Negrini M (2015) Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR. Biomark Res 3:12. doi:10.1186/s40364-015-0037-0

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pekarsky Y, Croce CM (2015) Role of miR-15/16 in CLL. Cell Death Differ 22:6–11

    Article  CAS  PubMed  Google Scholar 

  33. MĂ¼ller S, Rycak L, Afonso-Grunz F, Winter P, Zawada AM, Damrath E, Scheider J, Schmäh J, Koch I, Kahl G, Rotter B (2014) APADB: a database for alternative polyadenylation and microRNA regulation events. Database (Oxford). pii: bau076

    Google Scholar 

  34. MĂ¼ller S, Raulefs S, Bruns P, Afonso-Grunz F, Plötner A, Thermann R, Jäger C, Schlitter AM, Kong B, Regel I, Roth WK, Rotter B, Hoffmeier K, Kahl G, Koch I, Theis FJ, Kleeff J, Winter P, Michalski CW (2015) Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol Cancer 14:94

    Article  PubMed  PubMed Central  Google Scholar 

  35. Afonso-Grunz F, MĂ¼ller S (2015) Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 72(16):3127–3141

    Article  CAS  PubMed  Google Scholar 

  36. Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik SE, Ferdin J, Kunej T, Xiao L, Manoukian S, Secreto G, Ravagnani F, Wang X, Radice P, Croce CM, Davuluri RV, Calin GA (2010) Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 70(7):2789–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoon KA, Yoon H, Park S, Jang HJ, Zo JI, Lee HS, Lee JS (2012) The prognostic impact of microRNA sequence polymorphisms on the recurrence of patients with completely resected non-small cell lung cancer. J Thorac Cardiovasc Surg 144(4):794–807

    Article  CAS  PubMed  Google Scholar 

  38. Dole NS, Delany AM (2016) MicroRNA variants as genetic determinants of bone mass. Bone 84:57–68

    Article  CAS  PubMed  Google Scholar 

  39. Dago DN, Scafoglio C, Rinaldi A, Memoli D, Giurato G, Nassa G, Ravo M, Rizzo F, Tarallo R, Weisz A (2015) Estrogen receptor beta impacts hormone-induced alternative mRNA splicing in breast cancer cells. BMC Genomics 16:367. doi:10.1186/s12864-015-1541-1

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J, Lee ML, Schmittgen TD, Nana-Sinkam SP, Jarjoura D, Marsh CB (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3:e3694

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ma R, Jiang T, Kang X (2012) Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 31:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsang JC, Lo YM (2007) Circulating nucleic acids in plasma/serum. Pathology 39:197–207

    Article  CAS  PubMed  Google Scholar 

  43. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  44. Godfrey AC, Xu Z, Weinberg CR, Getts RC, Wade PA, DeRoo LA, Sandler DP, Taylor JA (2013) Serum microRNA expression as an early marker for breast cancer risk in prospectively collected samples from the Sister Study cohort. Breast Cancer Res 15:R42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251:499–505

    Article  PubMed  Google Scholar 

  46. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, Konishi H, Morimura R, Deguchi K, Fujiwara H, Okamoto K, Otsuji E (2010) Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer 102:1174–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goding CR (2016) Targeting the lncRNA SAMMSON reveals metabolic vulnerability in melanoma. Cancer Cell 29(5):619–621

    Article  CAS  PubMed  Google Scholar 

  49. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, Radaelli E, Eyckerman S, Leonelli C, Vanderheyden K, Rogiers A, Hermans E, Baatsen P, Aerts S, Amant F, Van Aelst S, van den Oord J, de Strooper B, Davidson I, Lafontaine DL, Gevaert K, Vandesompele J, Mestdagh P, Marine JC (2016) Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531(7595):518–522

    Article  CAS  PubMed  Google Scholar 

  50. Li R, Zhang L, Jia L, Duan Y, Li Y, Bao L, Sha N (2014) Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One 9(6):e100893

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhou T, Gao Y (2016) Increased expression of LncRNA BANCR and its prognostic significance in human hepatocellular carcinoma. World J Surg Oncol 14(1):8. doi:10.1186/s12957-015-0757-5

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sun M, Liu XH, Wang KM, Nie FQ, Kong R, Yang JS, Xia R, Xu TP, Jin FY, Liu ZJ, Chen JF, Zhang EB, De W, Wang ZX (2014) Downregulation of BRAF activated non-coding RNA is associated with poor prognosis for non-small cell lung cancer and promotes metastasis by affecting epithelial-mesenchymal transition. Mol Cancer 13:68. doi:10.1186/1476-4598-13-68

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li L, Zhang L, Zhang Y, Zhou F (2015) Increased expression of LncRNA BANCR is associated with clinical progression and poor prognosis in gastric cancer. Biomed Pharmacother 72:109–112

    Article  CAS  PubMed  Google Scholar 

  54. Peng ZQ, Lu RB, Xiao DM, Xiao ZM (2016) Increased expression of the lncRNA BANCR and its prognostic significance in human osteosarcoma. Genet Mol Res 15(1). doi: 10.4238/gmr.15017480

    Google Scholar 

  55. Li F, Cao L, Hang D, Wang F, Wang Q (2015) Long non-coding RNA HOTTIP is up-regulated and associated with poor prognosis in patients with osteosarcoma. Int J Clin Exp Pathol 8(9):11414–11420

    PubMed  PubMed Central  Google Scholar 

  56. Ye H, Liu K, Qian K (2016) Overexpression of long noncoding RNA HOTTIP promotes tumor invasion and predicts poor prognosis in gastric cancer. Onco Targets Ther 9:2081–2088

    PubMed  PubMed Central  Google Scholar 

  57. Wang CY, Hua L, Yao KH, Chen JT, Zhang JJ, Hu JH (2015) Long non-coding RNA CCAT2 is up-regulated in gastric cancer and associated with poor prognosis. Int J Clin Exp Pathol 8(1):779–785

    Google Scholar 

  58. Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, Guo M, Yue M, Wang L, Li X (2016) Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res 44(D1):D980–D985. doi:10.1093/nar/gkv1094

    Article  PubMed  Google Scholar 

  59. Li CH, Chen Y (2013) Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol 45(8):1895–1910. doi:10.1016/j.biocel.2013.05.030. Review

    Article  CAS  PubMed  Google Scholar 

  60. Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, Kim S, Safe S (2013) HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32(13):1616–1625. doi:10.1038/onc.2012.193

    Article  CAS  PubMed  Google Scholar 

  61. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–719. doi:10.4161/rna.20481. Epub 2012 Jun 1. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moshiri F, Callegari E, D’Abundo L, Corrà F, Lupini L, Sabbioni S, Negrini M (2014) Inhibiting the oncogenic mir-221 by microRNA sponge: toward microRNA-based therapeutics for HCC. Gastroenterol Hepatol Bed Bench 7(1):43–54

    PubMed  PubMed Central  Google Scholar 

  63. Dai Q, Li J, Zhou K, Liang T (2015) Competing endogenous RNA: a novel posttranscriptional regulatory dimension associated with the progression of cancer. Oncol Lett 10(5):2683–2690

    PubMed  PubMed Central  Google Scholar 

  64. Wang P, Zhi H, Zhang Y, Liu Y, Zhang J, Gao Y, Guo M, Ning S, Li X (2015) miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs. Database (Oxford). pii: bav098

    Google Scholar 

  65. Zhang J, Fan D, Jian Z, Chen GG, Lai PB (2015) Cancer specific long noncoding RNAs show differential expression patterns and competing endogenous RNA potential in hepatocellular carcinoma. PLoS One 10(10):e0141042

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bidros DS, Liu JK, Vogelbaum MA (2010) Future of convection enhanced delivery in the treatment of brain tumors. Future Oncol 6:117–125

    Article  CAS  PubMed  Google Scholar 

  68. Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, Ligon KL, Kesari S, Esau C, Stephens RM, Tannous BA, Krichevsky AM (2011) Human glioma growth is controlled by microRNA-10b. Cancer Res 71:3563–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Young DD, Connelly CM, Grohmann C, Deiters A (2010) Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 132:7976–7981

    Article  CAS  PubMed  Google Scholar 

  70. Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D (2014) Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 13(10):2352–2360. doi:10.1158/1535-7163.MCT-14-0209

    Article  CAS  PubMed  Google Scholar 

  71. Farooqi AA, Fayyaz S, Shatynska-Mytsyk I, Javed Z, Jabeen S, Yaylim I, Gasparri ML, Panici PB (2016) Is miR-34a a well-equipped swordsman to conquer temple of molecular oncology? Chem Biol Drug Des 87(3):321–334. doi:10.1111/cbdd.12634

    Article  CAS  PubMed  Google Scholar 

  72. Xiao Z, Li CH, Chan SL, Xu F, Feng L, Wang Y, Jiang JD, Sung JJ, Cheng CH, Chen Y (2014) A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma. Cancer Res 74:6236–6247

    Article  CAS  PubMed  Google Scholar 

  73. Mayer G, Raddatz MS, Grunwald JD, Famulok M (2007) RNA ligands that distinguish metabolite-induced conformations in the TPP riboswitch. Angew Chem Int Ed Engl 46:557–560

    Article  CAS  PubMed  Google Scholar 

  74. LĂ¼nse CE, Michlewski G, Hopp CS, Rentmeister A, CĂ¡ceres JF, Famulok M, Mayer G (2010) An aptamer targeting the apical-loop domain modulates pri-miRNA processing. Angew Chem Int Ed Engl 49:4674–4677

    Article  PubMed  Google Scholar 

  75. Subramanian N, Kanwar JR, Kanwar RK, Krishnakumar S (2015) Blocking the maturation of oncomiRNAs using pri-miRNA-17~92 aptamer in retinoblastoma. Nucleic Acid Ther 5:47–52

    Article  Google Scholar 

  76. Bouchie A (2013) First microRNA mimic enters clinic. Nat Biotechnol 31(7):77

    Article  Google Scholar 

  77. Li CH, Chen Y (2015) Small and long non-coding RNAs: novel targets in perspective cancer therapy. Curr Genomics 16:319–326

    Article  CAS  Google Scholar 

  78. Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT (2012) Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater 11:316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Di Martino MT, Leone E, Amodio N, Foresta U, Lionetti M, Pitari MR, Cantafio ME, Gullà A, Conforti F, Morelli E, Tomaino V, Rossi M, Negrini M, Ferrarini M, Caraglia M, Shammas MA, Munshi NC, Anderson KC, Neri A, Tagliaferri P, Tassone P (2012) Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res 18:6260–6270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim JH, Yeom JH, Ko JJ, Han MS, Lee K, Na SY, Bae J (2011) Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles. J Biotechnol 1553:287–292

    Article  Google Scholar 

  81. Huang X, Schwind S, Yu B, Santhanam R, Wang H, Hoellerbauer P, Mims A, Klisovic R, Walker AR, Chan KK, Blum W, Perrotti D, Byrd JC, Bloomfield CD, Caligiuri MA, Lee RJ, Garzon R, Muthusamy N, Lee LJ, Marcucci G (2013) Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res 19:2355–2367

    CAS  PubMed  PubMed Central  Google Scholar 

  82. D’Urso PI, D’Urso OF, Storelli C, Mallardo M, Gianfreda CD, Montinaro A, Cimmino A, Pietro C, Marsigliante S (2012) miR-155 is up-regulated in primary and secondary glioblastoma and promotes tumour growth by inhibiting GABA receptors. Int J Oncol 41:228–234

    PubMed  Google Scholar 

  83. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT, Carter BS Jr, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baraniskin A, Kuhnhenn J, Schlegel U, Maghnouj A, Zollner H, Schmiegel W, Hahn S, Schroers R (2012) Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma. Neuro Oncol 14:29–33

    Article  CAS  PubMed  Google Scholar 

  85. Chang TY, Huang TS, Wang HW, Chang SJ, Lo HH, Chiu YL, Wang YL, Hsiao CD, Tsai CH, Chan CH, You RI, Wu CH, Tsai TN, Cheng SM, Cheng CC (2014) miRNome traits analysis on endothelial lineage cells discloses biomarker potential circulating microRNAs which affect progenitor activities. BMC Genomics 15:802. doi:10.1186/1471-2164-15-802

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rossi A, D’Urso OF, Gatto G, Poltronieri P, Ferracin M, Remondelli P, Negrini M, Caporaso MG, Bonatti S, Mallardo M (2010) Non-coding RNAs change their expression profiles after retinoid induced differentiation of the promyelocytic cell line NB4. BMC Res Notes 3:24

    Article  PubMed  PubMed Central  Google Scholar 

  87. Manoharan H, Babcock K, Willi J, Pitot HC (2003) Biallelic expression of the H19 gene during spontaneous hepatocarcinogenesis in the albumin SV40 T antigen transgenic rat. Mol Carcinog 38:40–47

    Article  CAS  PubMed  Google Scholar 

  88. Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13:1–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palmiro Poltronieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Poltronieri, P., D’Urso, O.F., Mallardo, M. (2017). Emerging Role of ncRNAs in Cancer Biology: Techniques for Diagnostic Monitoring and Potential ncRNA-Based Therapies. In: Farooqi, A., Ismail, M. (eds) Molecular Oncology: Underlying Mechanisms and Translational Advancements. Springer, Cham. https://doi.org/10.1007/978-3-319-53082-6_5

Download citation

Publish with us

Policies and ethics