Abstract
Segmenting the blood pool and myocardium from a 3D cardiovascular magnetic resonance (CMR) image allows to create a patient-specific heart model for surgical planning in children with complex congenital heart disease (CHD). Implementation of semi-automatic or automatic segmentation algorithms is challenging because of a high anatomical variability of the heart defects, low contrast, and intensity variations in the images. Therefore, manual segmentation is the gold standard but it is labor-intensive. In this paper we report the set-up and results of a highly scalable semi-automatic diffusion algorithm for image segmentation. The method extrapolates the information from a small number of expert manually labeled reference slices to the remaining volume. While results of most semi-automatic algorithms strongly depend on well-chosen but usually unknown parameters this approach is parameter-free. Validation is performed on twenty 3D CMR images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
4 Nvidia Tesla K40, 4 Nvidia Tesla K20, 1 Nvidia Grid K2, 1 Nvidia GeForce GTX 770.
References
Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1768–1783 (2006)
Lösel, P., Heuveline, V.: Enhancing a diffusion algorithm for 4D image segmentation using local information. In: Proceedings of SPIE 9784, Medical Imaging 2016: Image Processing, 97842L (2016). doi:10.1117/12.2216202
Pace, D.F., Dalca, A.V., Geva, T., Powell, A.J., Moghari, M.H., Golland, P.: Interactive whole-heart segmentation in congenital heart disease. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 80–88. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_10
Schmauss, D., Haeberle, S., Hagl, C., Sodian, R.: Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur. J. Cardio.-Thorac. Surg. 47, 1044–1052 (2014)
Valverde, I., Gomez, G., Gonzalez, A., Suarez-Mejias, C., Adsuar, A., Coserria, J.F., Uribe, S., Gomez-Cia, T., Hosseinpour, A.R.: Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure. Cardiol. Young 25(4), 698–704 (2014)
Acknowledgements
This work was carried out with the support of the Federal Ministry of Education and Research (BMBF), Germany, within the collaboration center ASTOR (Arthropod Structure revealed by ultra-fast Tomography and Online Reconstruction) and NOVA (Network for Online Visualization and synergistic Analysis of Tomographic Data).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lösel, P., Heuveline, V. (2017). A GPU Based Diffusion Method for Whole-Heart and Great Vessel Segmentation. In: Zuluaga, M., Bhatia, K., Kainz, B., Moghari, M., Pace, D. (eds) Reconstruction, Segmentation, and Analysis of Medical Images. RAMBO HVSMR 2016 2016. Lecture Notes in Computer Science(), vol 10129. Springer, Cham. https://doi.org/10.1007/978-3-319-52280-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-52280-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52279-1
Online ISBN: 978-3-319-52280-7
eBook Packages: Computer ScienceComputer Science (R0)