Skip to main content

Nanotechnology-Based Stem Cell Applications and Imaging

  • Chapter
  • First Online:
Imaging in Stem Cell Transplant and Cell-based Therapy

Abstract

While the introduction of stem cell-based therapies has significantly widened the horizons of regenerative medicine, notable problems still persist in harvesting the relevant stem cells from the body, introducing them into an optimal microenvironment, and ensuring sustainable differentiation into appropriate and functional tissue once inside the body. Conventional methods of chemically inducing stem cells into specific lineages is being challenged by the advances in biomaterial technology, which suggests that engineered material properties are able to determine stem cell fate [1]. Modern materials such as nanomaterials are designed to conjugate with, or encapsulate the stem cells, to ensure that the artificial microenvironment of transplanted stem cells mimics the chemical and topographical cues that guide differentiation in the extracellular matrix of the native stem cell niche—“convincing” the cells to grow into appropriate, functional tissue. Another useful aspect of joining stem cells with nanomaterials is that nanoparticles can often be imaged with routine clinical imaging modalities such as magnetic resonance imaging (MRI), providing more reliable methods of locating and tracking the transplanted cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNT:

Carbon nanotubes

DNA:

Deoxyribonucleic acid

GNR:

Gold nanorods

GNS:

Gold nanoshells

GNT:

Golden carbon nanotubes

MRI:

Magnetic resonance imaging

NIR:

Near-infrared

PAI:

Photoacoustic imaging

RNA:

Ribonucleic acid

SPIO:

Superparamagnetic iron oxide

References

  1. Griffin MF, Butler PE, Seifalian AM, Kalaskar DM. Control of stem cell fate by engineering their micro and nanoenvironment. World J Stem Cells. 2015;7(1):37–50.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferreira L, Karp JM, Nobre L, Langer R. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell. 2008;3(2):136–46.

    Article  CAS  PubMed  Google Scholar 

  3. Baro AM, Miranda R, Alaman J, Garcia N, Binnig G, Rohrer H, et al. Determination of surface topography of biological specimens at high resolution by scanning tunnelling microscopy. Nature. 1985;315(6016):253–4.

    Article  CAS  PubMed  Google Scholar 

  4. Brakmane G, Winslet M, Seifalian AM. Systematic review: the applications of nanotechnology in gastroenterology. Aliment Pharmacol Ther. 2012;36(3):213–21.

    Article  CAS  PubMed  Google Scholar 

  5. Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ. Nanotechnology for regenerative medicine. Biomed Microdevices. 2010;12(4):575–87.

    Article  CAS  PubMed  Google Scholar 

  6. Long NV, Chien ND, Hayakawa T, Hirata H, Lakshminarayana G, Nogami M. The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology. Nanotechnology. 2010;21(3):035605.

    Article  PubMed  Google Scholar 

  7. Ahmed J, Sharma S, Ramanujachary KV, Lofland SE, Ganguli AK. Microemulsion-mediated synthesis of cobalt (pure fcc and hexagonal phases) and cobalt-nickel alloy nanoparticles. J Colloid Interface Sci. 2009;336(2):814–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hu JS, Guo YG, Liang HP, Wan LJ, Jiang L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J Am Chem Soc. 2005;127(48):17090–5.

    Article  CAS  PubMed  Google Scholar 

  9. Jitianu M, Goia DV. Zinc oxide colloids with controlled size, shape, and structure. J Colloid Interface Sci. 2007;309(1):78–85.

    Article  CAS  PubMed  Google Scholar 

  10. Ren T-Z, Yuan Z-Y, Hu W, Zou X. Single crystal manganese oxide hexagonal plates with regulated mesoporous structures. Microporous Mesoporous Mater. 2008;112(1–3):467–73.

    Article  CAS  Google Scholar 

  11. Schmidt E, Vargas A, Mallat T, Baiker A. Shape-selective enantioselective hydrogenation on Pt nanoparticles. J Am Chem Soc. 2009;131(34):12358–67.

    Article  CAS  PubMed  Google Scholar 

  12. Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater. 2001;13(18):1389–93.

    Article  CAS  Google Scholar 

  13. Guo L, Ji Y, Xu H, Wu Z, Simon P. Synthesis and evolution of rod-like nano-scaled ZnC2O4[middle dot]2H2O whiskers to ZnO nanoparticles. J Mater Chem. 2003;13(4):754–7.

    Article  CAS  Google Scholar 

  14. Xiao R, Cho SI, Liu R, Lee SB. Controlled electrochemical synthesis of conductive polymer nanotube structures. J Am Chem Soc. 2007;129(14):4483–9.

    Article  CAS  PubMed  Google Scholar 

  15. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Accomasso L, Gallina C, Turinetto V, Giachino C. Stem cell tracking with nanoparticles for regenerative medicine purposes: an overview. Stem Cells Int. 2016;2016:7920358.

    Article  PubMed  Google Scholar 

  17. Solanki A, Kim JD, Lee KB. Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine (Lond). 2008;3(4):567–78.

    Article  CAS  Google Scholar 

  18. Deb KD, Griffith M, Muinck ED, Rafat M. Nanotechnology in stem cells research: advances and applications. Front Biosci (Land Ed). 2012;17:1747–60.

    Article  CAS  Google Scholar 

  19. Villa C, Erratico S, Razini P, Fiori F, Rustichelli F, Torrente Y, et al. Stem cell tracking by nanotechnologies. Int J Mol Sci. 2010;11(3):1070–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zagorovsky K, Chan WCW. Bioimaging: illuminating the deep. Nat Mater. 2013;12(4):285–7.

    Article  CAS  PubMed  Google Scholar 

  21. Loai Y, Sakib N, Janik R, Foltz WD, Cheng HL. Human aortic endothelial cell labeling with positive contrast gadolinium oxide nanoparticles for cellular magnetic resonance imaging at 7 Tesla. Mol Imaging. 2012;11(2):166–75.

    CAS  PubMed  Google Scholar 

  22. Himmelreich U, Weber R, Ramos-Cabrer P, Wegener S, Kandal K, Shapiro EM, et al. Improved stem cell MR detectability in animal models by modification of the inhalation gas. Mol Imaging. 2005;4(2):104–9.

    PubMed  Google Scholar 

  23. Ricles LM, Nam SY, Sokolov K, Emelianov SY, Suggs LJ. Function of mesenchymal stem cells following loading of gold nanotracers. Int J Nanomedicine. 2011;6:407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nam SY, Ricles LM, Suggs LJ, Emelianov SY. In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS One. 2012;7(5):e37267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jokerst JV, Thangaraj M, Kempen PJ, Sinclair R, Gambhir SS. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano. 2012;6(7):5920–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Nie L, Chen X. Photoacoustic molecular imaging: from multiscale biomedical applications towards early-stage theranostics. Trends Biotechnol. 2016;34(5):420–33.

    Article  CAS  PubMed  Google Scholar 

  27. Galanzha EI, Kim JW, Zharov VP. Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells. J Biophotonics. 2009;2(12):725–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de la Zerda A, Kim JW, Galanzha EI, Gambhir SS, Zharov VP. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics. Contrast Media Mol Imaging. 2011;6(5):346–69.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim JW, Galanzha EI, Zaharoff DA, Griffin RJ, Zharov VP. Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo. Mol Pharm. 2013;10(3):813–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zharov VP, Galanzha EI, Shashkov EV, Kim JW, Khlebtsov NG, Tuchin VV. Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J Biomed Opt. 2007;12(5):051503.

    Article  PubMed  Google Scholar 

  31. Zharov VP, Kim JW, Curiel DT, Everts M. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine. 2005;1(4):326–45.

    Article  CAS  PubMed  Google Scholar 

  32. Galanzha EI, Shashkov E, Sarimollaoglu M, Beenken KE, Basnakian AG, Shirtliff ME, et al. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles. PLoS One. 2012;7(9):e45557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim JW, Galanzha EI, Shashkov EV, Moon HM, Zharov VP. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol. 2009;4(10):688–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Galanzha EI, Kokoska MS, Shashkov EV, Kim JW, Tuchin VV, Zharov VP. In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles. J Biophotonics. 2009;2(8–9):528–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang L, Zharov VP. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol. 2009;4(12):855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kotagiri N, Kim JW. Stealth nanotubes: strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution. Int J Nanomedicine. 2014;9(Suppl 1):85–105.

    PubMed  PubMed Central  Google Scholar 

  37. Kotagiri N, Kim JW. Carbon nanotubes fed on “carbs”: coating of single-walled carbon nanotubes by dextran sulfate. Macromol Biosci. 2010;10(3):231–8.

    Google Scholar 

  38. Kotagiri N, Lee JS, Kim JW. Selective pathogen targeting and macrophage evading carbon nanotubes through dextran sulfate coating and PEGylation for photothermal theranostics. J Biomed Nanotechnol. 2013;9(6):1008–16.

    Article  CAS  PubMed  Google Scholar 

  39. Kotagiri N, Sakon J, Han H, Zharov VP, Kim JW. Fluorescent ampicillin analogues as multifunctional disguising agents against opsonization. Nanoscale. 2016;8(25):12658–67.

    Article  CAS  PubMed  Google Scholar 

  40. Bohmer N, Jordan A. Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells. Beilstein J Nanotechnol. 2015;6:167–76.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jing XH, Yang L, Duan XJ, Xie B, Chen W, Li Z, et al. In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine. 2008;75(4):432–8.

    Article  PubMed  Google Scholar 

  42. Delcroix GJ, Jacquart M, Lemaire L, Sindji L, Franconi F, Le Jeune JJ, et al. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: in vitro characterization and migration potential in rat brain. Brain Res. 2009;1255:18–31.

    Article  CAS  PubMed  Google Scholar 

  43. Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, et al. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation. 2007;116(11 Suppl):I38–45.

    CAS  PubMed  Google Scholar 

  44. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17(7):484–99.

    Article  CAS  PubMed  Google Scholar 

  45. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A. 2005;102(32):11474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Au KW, Liao SY, Lee YK, Lai WH, Ng KM, Chan YC, et al. Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells. Biochem Biophys Res Commun. 2009;379(4):898–903.

    Article  CAS  PubMed  Google Scholar 

  47. Guzman R, Uchida N, Bliss TM, He D, Christopherson KK, Stellwagen D, et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci U S A. 2007;104(24):10211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li L, Chopp M, Ding GL, Qu CS, Li QJ, Lu M, et al. MRI measurement of angiogenesis and the therapeutic effect of acute marrow stromal cell administration on traumatic brain injury. J Cereb Blood Flow Metab. 2012;32(11):2023–32.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res. 2007;161:367–83.

    Article  CAS  PubMed  Google Scholar 

  50. Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, et al. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood. 2003;102(3):867–72.

    Article  CAS  PubMed  Google Scholar 

  51. Crabbe A, Vandeputte C, Dresselaers T, Sacido AA, Verdugo JM, Eyckmans J, et al. Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant. 2010;19(8):919–36.

    Article  PubMed  Google Scholar 

  52. Qiu B, Xie D, Walczak P, Li X, Ruiz-Cabello J, Minoshima S, et al. Magnetosonoporation: instant magnetic labeling of stem cells. Magn Reson Med. 2010;63(6):1437–41.

    Article  PubMed  Google Scholar 

  53. Rizvi SB, Ghaderi S, Keshtgar M, Seifalian AM. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev. 2010;1.

    Google Scholar 

  54. Shah BS, Mao JJ. Labeling of mesenchymal stem cells with bioconjugated quantum dots. Methods Mol Biol. 2011;680:61–75.

    Article  CAS  PubMed  Google Scholar 

  55. Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.

    Article  CAS  PubMed  Google Scholar 

  56. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8.

    Article  CAS  PubMed  Google Scholar 

  57. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  59. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 2004;4(11):2163–9.

    Article  CAS  Google Scholar 

  60. Chakraborty SK, Fitzpatrick JA, Phillippi JA, Andreko S, Waggoner AS, Bruchez MP, et al. Cholera toxin B conjugated quantum dots for live cell labeling. Nano Lett. 2007;7(9):2618–26.

    Article  CAS  PubMed  Google Scholar 

  61. Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ. Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett. 2007;7(10):3071–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang G, Zeng G, Wang C, Wang H, Yang B, Guan F, et al. Biocompatibility of quantum dots (CdSe/ZnS ) in human amniotic membrane-derived mesenchymal stem cells in vitro. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159(2):227–33.

    PubMed  Google Scholar 

  63. Slotkin JR, Chakrabarti L, Dai HN, Carney RSE, Hirata T, Bregman BS, et al. In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn. 2007;236(12):3393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rosen AB, Kelly DJ, Schuldt AJ, Lu J, Potapova IA, Doronin SV, et al. Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells. 2007;25(8):2128–38.

    Article  CAS  PubMed  Google Scholar 

  65. Barnett JM, Penn JS, Jayagopal A. Imaging of endothelial progenitor cell subpopulations in angiogenesis using quantum dot nanocrystals. Methods Mol Biol. 2013;1026:45–56.

    Article  CAS  PubMed  Google Scholar 

  66. Li X, Liu X, Shi D, Wen X. Particle systems for stem cell applications. J Biomed Nanotechnol. 2015;11(7):1107–23.

    Article  CAS  PubMed  Google Scholar 

  67. Burns A, Ow H, Wiesner U. Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev. 2006;35(11):1028–42.

    Article  CAS  PubMed  Google Scholar 

  68. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–88.

    Article  CAS  PubMed  Google Scholar 

  69. Huang DM, Hung Y, Ko BS, Hsu SC, Chen WH, Chien CL, et al. Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J. 2005;19(14):2014–6.

    CAS  PubMed  Google Scholar 

  70. Accomasso L, Cibrario Rocchietti E, Raimondo S, Catalano F, Alberto G, Giannitti A, et al. Fluorescent silica nanoparticles improve optical imaging of stem cells allowing direct discrimination between live and early-stage apoptotic cells. Small. 2012;8(20):3192–200.

    Article  CAS  PubMed  Google Scholar 

  71. Liberman A, Martinez HP, Ta CN, Barback CV, Mattrey RF, Kono Y, et al. Hollow silica and silica-boron nano/microparticles for contrast-enhanced ultrasound to detect small tumors. Biomaterials. 2012;33(20):5124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen YS, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011;11(2):348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van Schooneveld MM, Gloter A, Stephan O, Zagonel LF, Koole R, Meijerink A, et al. Imaging and quantifying the morphology of an organic-inorganic nanoparticle at the sub-nanometre level. Nat Nanotechnol. 2010;5(7):538–44.

    Article  PubMed  Google Scholar 

  74. Wang F, Tan WB, Zhang Y, Fan X, Wang M. Luminescent nanomaterials for biological labelling. Nanotechnology. 2006;17(1):R1.

    Article  CAS  Google Scholar 

  75. Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M. Attachment of stem cells to scaffold particles for intra-cerebral transplantation. Nat Protoc. 2009;4(10):1440–53.

    Article  CAS  PubMed  Google Scholar 

  76. Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M. The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials. 2009;30(16):2985–94.

    Article  CAS  PubMed  Google Scholar 

  77. Hornig S, Heinze T, Becer CR, Schubert US. Synthetic polymeric nanoparticles by nanoprecipitation. J Mater Chem. 2009;19(23):3838–40.

    Article  CAS  Google Scholar 

  78. Huang X, Zhang F, Wang H, Niu G, Choi KY, Swierczewska M, et al. Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials. 2013;34(7):1772–80.

    Article  CAS  PubMed  Google Scholar 

  79. Tong L, Wei Q, Wei A, Cheng JX. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol. 2009;85(1):21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim JW, Shashkov EV, Galanzha EI, Kotagiri N, Zharov VP. Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters. Lasers Surg Med. 2007;39(7):622–34.

    Article  PubMed  Google Scholar 

  81. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110(14):7238–48.

    Article  CAS  PubMed  Google Scholar 

  82. Kim J-W, Deaton R. Molecular self-assembly of multifunctional nanoparticle composites with arbitrary shapes and functions: challenges and strategies. Part Part Syst Charact. 2013;30(2):117–32.

    Article  CAS  Google Scholar 

  83. Kim JW, Kim JH, Deaton R. DNA-linked nanoparticle building blocks for programmable matter. Angew Chem Int Ed Engl. 2011;50(39):9185–90.

    Article  CAS  PubMed  Google Scholar 

  84. Kim JW, Kim JH, Deaton R. Programmable construction of nanostructures: assembly of nanostructures with various nanocomponents. IEEE Nanotechnol Mag. 2012;6(1):19–23.

    Article  Google Scholar 

  85. Kozlovskaya V, Kharlampieva E, Khanal BP, Manna P, Zubarev ER, Tsukruk VV. Ultrathin layer-by-layer hydrogels with incorporated gold nanorods as pH-sensitive optical materials. Chem Mater. 2008;20(24):7474–85.

    Article  CAS  Google Scholar 

  86. Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, et al. Metal nanoshells. Ann Biomed Eng. 2006;34(1):15–22.

    Article  PubMed  Google Scholar 

  87. Bardhan R, Chen W, Perez-Torres C, Bartels M, Huschka RM, Zhao LL, et al. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv Funct Mater. 2009;19(24):3901–9.

    Article  CAS  Google Scholar 

  88. Cho SK, Emoto K, Su LJ, Yang X, Flaig TW, Park W. Functionalized gold nanorods for thermal ablation treatment of bladder cancer. J Biomed Nanotechnol. 2014;10(7):1267–76.

    Article  CAS  PubMed  Google Scholar 

  89. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–9.

    Article  CAS  PubMed  Google Scholar 

  90. Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells. 2006;24(11):2391–7.

    Article  CAS  PubMed  Google Scholar 

  91. Hashi CK, Zhu Y, Yang GY, Young WL, Hsiao BS, Wang K, et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A. 2007;104(29):11915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med. 2004;61(9):727–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, Soenen SJ. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro-in vivo gap. Chem Soc Rev. 2013;42(21):8339–59.

    Article  CAS  PubMed  Google Scholar 

  94. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small (Weinheim an der Bergstrasse, Germany). 2008;4(1):26–49.

    Article  CAS  Google Scholar 

  95. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev. 2009;61(6):457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna A. Jensen M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jensen, H.A. et al. (2017). Nanotechnology-Based Stem Cell Applications and Imaging. In: Pandey, T. (eds) Imaging in Stem Cell Transplant and Cell-based Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-51833-6_2

Download citation

Publish with us

Policies and ethics