Skip to main content

Analysis of a 4-D Hyperchaotic Fractional-Order Memristive System with Hidden Attractors

  • Chapter
  • First Online:
Advances in Memristors, Memristive Devices and Systems

Abstract

In 1695, G. Leibniz laid the foundations of fractional calculus, but mathematicians revived it only 300 years later. In 1971, L.O. Chua postulated the existence of a fourth circuit element, called memristor, but Williams’s group of HP Labs realized it only 37 years later. In recent years, few unusual dynamical systems, such as those with a line of equilibriums, with stable equilibria or without equilibrium, which belong to chaotic systems with hidden attractors, have been reported. By looking at these interdisciplinary and promising research areas, in this chapter, a fractional-order 4-D memristive system with a line of equilibria is introduced. In particular, a hyperchaotic behavior in a simple fractional-order memristor-based system is presented. Systematic studies of the hyperchaotic behavior in the integer and fractional-order form of the system are performed using phase portraits, Poincaré maps, bifurcation diagrams and Lyapunov exponents. Simulation results show that both integer-order and fractional-order system exhibit hyperchaotic behavior over a wide range of control parameter. Finally, the electronic circuits for the evaluation of the theoretical model of the proposed integer and fractional-order systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari, S. P., Yang, C., Kim, H., & Chua, L. O. (2012). Memristor bridge synapse-based neural network and its learning. IEEE Transactions on Neural Networks and Learning Systems, 23(9), 1426–1435.

    Article  Google Scholar 

  • Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE Transactions on Circuits and Systems., 60(11), 3008–3021.

    Article  Google Scholar 

  • Ascoli, A., & Corinto, F. (2013). Memristor models in a chaotic neural circuit. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23(3), 1350052.

    Article  MathSciNet  MATH  Google Scholar 

  • Ascoli, A., Corinto, F., Senger, V., & Tetzlaff, R. (2013). Memristor model comparison. IEEE Circuits and Systems Magazine, 13(2), 89–105.

    Article  Google Scholar 

  • Bai, J., Yu, Y., Wang, S., & Song, Y. (2012). Modified projective synchronization of uncertain fractional order hyperchaotic systems. Communications in Nonlinear Science and Numerical Simulation, 17(4), 1921–1928.

    Article  MathSciNet  MATH  Google Scholar 

  • Barakat, M., Mansingka, A., Radwan, A. G., & Salama, K. N. (2013). Generalized hardware post processing technique for chaos–based pseudorandom number generators. ETRI Journal, 35, 448–458.

    Article  Google Scholar 

  • Biolek, D., Biolek, Z., & Biolková, V. (2011). Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be “self-crossing”. Electronics Letters, 47(25), 1385–1387.

    Article  Google Scholar 

  • Biolek, Z., Biolek, D., & Biolková, V. (2012). Computation of the area of memristor pinched hysteresis loop. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(9), 607–611.

    Article  Google Scholar 

  • Biolek, Z., Biolek, D., & Biolková, V. (2013). Analytical computation of the area of pinched hysteresis loops of ideal mem-elements. Radioengineering, 22(1), 132–135.

    Google Scholar 

  • Bo-Cheng, B., Jian-Ping, X., Guo-Hua, Z., Zheng-Hua, M., & Ling, Z. (2011). Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chinese Physics B, 20(12), 120502.

    Article  Google Scholar 

  • Bouali, S., Buscarino, A., Fortuna, L., Frasca, M., & Gambuzza, L. V. (2012). Emulating complex business cycles by using an electronic analogue. Nonlinear Analysis: Real World Applications, 13, 2459–2465.

    Google Scholar 

  • Brezetskyi, S., Dudkowski, D., & Kapitaniak, T. (2015). Rare and hidden attractors in Van der Pol-Duffing oscillators. The European Physical Journal Special Topics, 224, 1459–1467.

    Article  Google Scholar 

  • Buscarino, A., Fortuna, L., & Frasca, M. (2009). Experimental robust synchronization of hyperchaotic circuits. Physica D: Nonlinear Phenomena, 238, 19171922.

    Article  MATH  Google Scholar 

  • Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L. V., & Sciuto, G. (2012a). Memristive chaotic circuits based on cellular nonlinear networks. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 22(03), 1250070.

    Article  Google Scholar 

  • Buscarino, A., Fortuna, L., Frasca, M., & Gambuzza, L. V. (2012b). A chaotic circuit based on Hewlett-Packard memristor. Chaos: An Interdisciplinary. Journal of Nonlinear Science, 22(2), 023136.

    MathSciNet  MATH  Google Scholar 

  • Buscarino, A., Fortuna, L., Frasca, M., & Gambuzza, L. V. (2012c). A gallery of chaotic oscillators based on HP memristor. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 22, 1330014–1330015.

    MATH  Google Scholar 

  • Butzer, P., & Westphal, U. (2000). An introduction to fractional calculus. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Cafagna, D., & Grassi, G. (2008). Fractional-order Chua’s circuit: Time-domain analysis, bifurcation, chaotic behavior and test for chaos. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 18(3), 615–639.

    Article  MathSciNet  MATH  Google Scholar 

  • Cafagna, D., & Grassi, G. (2013). Elegant chaos in fractional-order system without equilibria. Mathematical Problems in Engineering, 2013.

    Google Scholar 

  • Cafagna, D., & Grassi, G. (2015). Fractional-order systems without equillibria: The first example of hyperchaos and its application to synchronization. Chinese Physics B, 24(8), 080502.

    Article  Google Scholar 

  • Charef, A., Sun, H. H., Tsao, Y. Y., & Onaral, B. (1992). Fractal system as represented by singularity function. IEEE Transactions on Automatic Control, 37(9), 1465–1470.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y., Jung, G. Y., Ohlberg, D. A. A., Li, X. M., Stewart, D. R., Jeppesen, J. O., et al. (2003). Nanoscale molecular-switch crossbar circuits. Nanotechology, 14, 462–468.

    Article  Google Scholar 

  • Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64, 209–223.

    Article  MathSciNet  Google Scholar 

  • Concepcion, A., Chen, Y., Vinagre, B., Xue, D., & Feliu-Batlle, V. (2014). Fractional-order systems and controls: Fundamentals and applications. London, UK: Springer.

    MATH  Google Scholar 

  • Corinto, F., & Ascoli, A. (2012). Memristor based elements for chaotic circuits. IEICE Nonlinear Theory and Its Applications, 3(3), 336–356.

    Article  Google Scholar 

  • Corinto, F., Ascoli, A., & Gilli, M. (2012). Analysis of current-voltage characteristics for memristive elements in pattern recognition systems. International Journal of Circuit Theory and Applications, 40(12), 1277–1320.

    Article  Google Scholar 

  • Dadras, S., Momeni, H. R., Qi, G., & Wang, Z. (2012). Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dynamics, 67, 1161–1173.

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, H., Li, T., Wang, Q., & Li, H. (2009). A fractional-order hyperchaotic system and its synchronization. Chaos, Solitons and Fractals, 41(2), 962–969.

    Article  MATH  Google Scholar 

  • Deng, W., & Lu, J. (2007). Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system. Physics Letters A, 369(5–6), 438–443.

    Article  MATH  Google Scholar 

  • Driscoll, T., Quinn, J., & Klein, S. (2010). Memristive adaptive filters. Applied Physics Letters, 97(9), 093502.

    Article  Google Scholar 

  • Driscoll, T., Pershin, Y. V., Basov, D. N., & Di Ventra, M. (2011). Chaotic memristor. Applied Physics A, 102(4), 885–889.

    Article  Google Scholar 

  • Dumitru, B., Guvenc, Z., & Tenreiro Machado, J. (2014). New trends in nanotechnology and fractional calculus applications. Germany: Springer.

    MATH  Google Scholar 

  • Fitch, A. L., Yu, D., Iu, H. H. C., & Sreeram, V. (2012). Hyperchaos in an memristor-based modified canonical Chua’s circuit. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 22, 1250133–1250138.

    Article  MATH  Google Scholar 

  • Fortuna, L., Frasca, M., & Xibilia, M. G. (2009). Chua’s circuit implementation: Yesterday, today and tomorrow. Singapore: World Scientific.

    Book  Google Scholar 

  • Gamez-Guzman, L., Cruz-Hernandez, C., Lopez-Gutierrez, R., & Garcia-Guerrero, E. E. (2009). Synchronization of chua’s circuits with multiscroll attractors: Application to communication. Communications in Nonlinear Science and Numerical Simulation, 14, 2765–2775.

    Article  Google Scholar 

  • Gao, X., & Yu, J. (2005). Chaos in the fractional order periodically forced complex duffing’s oscillators. Chaos, Solitons and Fractals, 24(4), 1097–1104.

    Article  MATH  Google Scholar 

  • Ghasemi, S., Tabesh, A., & Askari-Marnani, J. (2014). Application of fractional calculus theory to robust controller design for wind turbine generators. IEEE Transactions on Energy Conversion, 29, 780–787.

    Article  Google Scholar 

  • Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91, 34101–34104.

    Article  Google Scholar 

  • Hegger, R., Kantz, H., & Schereiber, T. (1998). Practical implementation of nonlinear time series methods: The TISEAN package. Chaos, 9(1999), 1–27.

    Google Scholar 

  • Itoh, M., & Chua, L. O. (2008). Memristor oscillators. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 18(11), 3183–3206.

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari, S., & Sprott, J. C. (2013). Simple chaotic flows with a line equilibrium. Chaos, Solitons and Fractals, 57, 79–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari, S., Sprott, J. C., & Nazarimehr, F. (2015). Recent new examples of hidden attractors. The European Physical Journal Special Topics, 224, 1469–1476.

    Article  Google Scholar 

  • Kenneth, S. (1993). An introduction to fractional calculus and fractional differential equations. USA: Wiley-Interscience.

    MATH  Google Scholar 

  • Krishna, B. T., & Reddy, K. V. V. S. (2008). Active and passive realization of fractance device of order 1/2. Active and Pasive Electronic Components, 2008(369421), 1–5.

    Article  Google Scholar 

  • Kuznetsov, N. V., Leonov, G. A., & Seledzhi, S. M. (2011). Hidden oscillations in nonlinear control systems. IFAC Proceedings, 18, 2506–2510.

    Article  Google Scholar 

  • Leonov, G. A., Kuznetsov, N. V., Kuznetsova, O. A., Seledzhi, S. M., & Vagaitsev, V. I. (2011a). Hidden oscillations in dynamical systems. WSEAS Transactions on Systems and Control, 6(2), 54–67.

    Google Scholar 

  • Leonov, G. A., Kuznetsov, N. V., Kuznetsova, O. A., Seldedzhi, S. M., & Vagaitsev, V. I. (2011b). Hidden oscillations in dynamical systems. Transactions on Systems and Control, 6, 54–67.

    Google Scholar 

  • Leonov, G. A., & Kuznetsov, N. V. (2011a). Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems. IFAC Proceedings, 18, 2494–2505.

    Article  Google Scholar 

  • Leonov, G. A., & Kuznetsov, N. V. (2011b). Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems. Doklady Mathematics, 84, 475–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov, G. A., Kuznetsov, N. V., & Vagaitsev, V. I. (2011c). Localization of hidden Chua’s attractors. Physics Letters A, 375, 2230–2233.

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov, G. A., Kuznetsov, N. V., & Vagaitsev, V. I. (2012). Hidden attractor in smooth Chua system. Phys. D, 241, 1482–1486.

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov, G. A., & Kuznetsov, N. V. (2013). Hidden attractors in dynamical systems: from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23(1), 1330002.

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov, G. A., Kuznetsov, N. V., Kiseleva, M. A., Solovyeva, E. P., & Zaretskiy, A. M. (2014). Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dynamics, 77, 277–288.

    Article  Google Scholar 

  • Li, C., & Chen, G. (2004). Chaos and hyperchaos in the fractional-order Rössler equations. Physica A: Statistical Mechanics and its Applications, 341, 55–61.

    Google Scholar 

  • Li, C., & Peng, G. (2004). Chaos in Chen's system with a fractional order. Chaos, Solitons & Fractals, 22(2), 443–450.

    Google Scholar 

  • Li, H., Liao, X., & Luo, M. (2011). A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation. Nonlinear Dynamics, 68(1), 137–149.

    MathSciNet  MATH  Google Scholar 

  • Li, Q., Hu, S., Tang, S., & Zeng, G. (2014). Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. International Journal of Circuit Theory and Applications, 42, 1172–1188.

    Article  Google Scholar 

  • Li, Q., Zeng, H., & Li, J. (2015). Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dynamics, 79, 2295–2308.

    Article  MathSciNet  Google Scholar 

  • Lu, J. (2006). Chaotic dynamics of the fractional-order Lü system and its synchronization. Physics Letters A, 354(4), 305–311.

    Article  Google Scholar 

  • Matouk, A. E. (2009). Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system. Physics Letters A, 373(25), 2166–2173.

    Article  MATH  Google Scholar 

  • Muthuswamy, B. (2010). Implementing memristor based chaotic circuits. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20(05), 1335–1350.

    Article  MATH  Google Scholar 

  • Oldhamm, K., & Spanier, J. (1974). The fractional calculus. NewYork, USA: Academic-Press.

    Google Scholar 

  • Pershin, Y. V., & Di Ventra, M. (2008). Spin memristive systems: Spin memory effects in semiconductor spintronics. Physics Review B, 78, 113309/1–113309/4.

    Google Scholar 

  • Pershin, Y. V., La Fontaine, S., & Di Ventra, M. (2009). Memristive model of amoeba learning. Physics Review E, 80, 021926/1–021926/6.

    Google Scholar 

  • Pershin, Y. V., & Di Ventra, M. (2010). Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 23, 881.

    Article  Google Scholar 

  • Petras, I. (2011). Fractional-order nonlinear system: modeling, analysis and simulation. Berlin Heidelberg: Springer.

    Book  MATH  Google Scholar 

  • Pham, V. T., Rahma, F., Frasca, M., & Fortuna, L. (2014a). Dynamics and synchronization of a novel hyperchaotic system without equilibrium. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 24(06), 1450087.

    Article  MathSciNet  MATH  Google Scholar 

  • Pham, V. T., Volos, C. K., Jafari, S., & Wang, X. (2014b). Generating a novel hyperchaotic system out of equilibrium. Optoelectronics and Advanced Materials, Rapid Communications, 8(5–6), 535–539.

    Google Scholar 

  • Pham, V. T., Volos, C. K., Jafari, S., Wang, X., & Vaidyanathan, S. (2014c). Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectronics and Advanced Materials, Rapid Communications, 8, 1157–1163.

    Google Scholar 

  • Pham, V.T., Volos, C.K., and Gambuzza, L.V. (2014d). A memristive hyperchaotic system without equilibrium. The Scientific World Journal, 2014.

    Google Scholar 

  • Pham, V.-T., Jafari, S., Volos, C. K., Wang, X., & Golpayegani, S. M. R. H. (2014e). Is that really hidden? The presence of complex fixed-points in chaotic flows with no equilibria. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 24, 1450146.

    Article  MATH  Google Scholar 

  • Pham, V. T., Vaidyanathan, S., Volos, C. K., & Jafari, S. (2015a). Hidden attractors in a chaotic system with an exponential nonlinear term. The European Physical Journal Special Topics, 224, 1507–1517.

    Article  Google Scholar 

  • Pham, V. T., Volos, C. K., Vaidyanathan, S., Le, T. P., & Vu, V. Y. (2015b). A memristor-based hyperchaotic system with hidden attractors: Dynamics, synchronization and circuital emulating. Journal of Engineering Science and Technology Review, 8(2), 205–214.

    Google Scholar 

  • Ping, Z., Li-Jia, W., & Xue-Feng, C. (2009). A novel fractional-order hyperchaotic system and its synchronization. Chinese Physics B, 18(7), 2674.

    Article  Google Scholar 

  • Podlubny, I. (1999). Fractional differential equations. NewYork, USA: Academic Press.

    MATH  Google Scholar 

  • Radwan, A. G., Soliman, A. S., & Elwakil, A. S. (2008). First-order generalized to the fractional domain. Journal of Circuits, Systems, and Computers, 17(1), 55–66.

    Article  MATH  Google Scholar 

  • Richard, H. (2014). Fractional calculus: An introduction for physicists. Singapore: World Scientific Publishing.

    MATH  Google Scholar 

  • Sadoudi, S., Tanougast, C., Azzaz, M. S., & Dandache, A. (2013). Design and FPGA implementation of a wireless hyperchaotic communication system for secure realtime image transmission. EURASIP Journal on Image and Video Processing, 943, 1–18.

    Google Scholar 

  • Santanu, S. (2015). Fractional calculus with applications for nuclear reactor dynamics. London, UK: Productivity Press.

    MATH  Google Scholar 

  • Sapoff, M., & Oppenheim, R. M. (1963). Theory and application of self-heated thermistors. Proceedings of the IEEE, 51, 1292–1305.

    Article  Google Scholar 

  • Shahzad, M., Pham, V. T., Ahmad, M. A., Jafari, S., & Hadaeghi, F. (2015). Synchronization and circuit design of a chaotic system with coexisting hidden attractors. The European Physical Journal Special Topics, 224, 1637–1652.

    Article  Google Scholar 

  • Sharma, P. R., Shrimali, M. D., Prasad, A., Kuznetsov, N. V., & Leonov, G. A. (2015). Control of multistability in hidden attractors. The European Physical Journal Special Topics, 224, 1485–1491.

    Article  Google Scholar 

  • Shin, S., Kim, K., & Kang, S. M. (2011). Memristor applications for programmable analog ICs. IEEE Transactions on Nanotechnology, 10(2), 266–274.

    Article  Google Scholar 

  • Sprott, J. C. (2003). Chaos and times-series analysis. Oxford, UK: Oxford University Press.

    MATH  Google Scholar 

  • Sprott, J. C. (2015). Strange attractors with various equilibrium types. The European Physical Journal Special Topics, 224, 1409–1419.

    Article  Google Scholar 

  • Strogatz, S. H. (1994). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Massachusetts, USA: Perseus Books.

    MATH  Google Scholar 

  • Strukov, D., Snider, G., Stewart, G., & Williams, R. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  • Sundarapandian, V., & Pehlivan, I. (2012). Analysis, control, synchronization, and circuit design of a novel chaotic system. Mathematical and Computer Modelling, 55, 1904–1915.

    Google Scholar 

  • Tetzlaff, R. (2014). Memristors and Memristive Systems. New York, USA: Springer.

    Book  Google Scholar 

  • Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015a). Analysis, control, synchronization and spice implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium. Journal of Engineering Science and Technology Review, 8, 232–244.

    Google Scholar 

  • Vaidyanathan, S., Pham, V. T., & Volos, C. K. (2015b). A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. The European Physical Journal Special Topics, 224(8), 1575–1592.

    Article  Google Scholar 

  • Vaidyanathan, S., & Volos, C. K. (2016a). Advances and applications in nonlinear control systems. Berlin, Germany: Springer.

    Book  MATH  Google Scholar 

  • Vaidyanathan, S., & Volos, C. K. (2016b). Advances and applications in chaotic systems. Berlin, Germany: Springer.

    Book  MATH  Google Scholar 

  • Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2012). A chaotic path planning generator for autonomous mobile robots. Robotics and Autonomous Systems, 60, 651–656.

    Article  Google Scholar 

  • Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93, 1328–1340.

    Article  Google Scholar 

  • Wang, X., & Wang, M. (2007). Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos, 17(3), 033106.

    Article  MATH  Google Scholar 

  • Wei, Z., Wang, R., & Liu, A. (2014). A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Mathematics and Computers in Simulation, 100, 13–23.

    Article  MathSciNet  Google Scholar 

  • Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. (1985). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), 285–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, X., Lu, H., & Shen, S. (2009). Synchronization of a new fractional-order hyperchaotic system. Physics Letters A, 373(27), 2329–2337.

    Article  MathSciNet  MATH  Google Scholar 

  • Yalcin, M. E., Suykens, J. A. K., & Vandewalle, J. (2004). True random bit generation from a double-scroll attractor. IEEE Transactions on Circuits and Systems I: Regular Papers, 51, 1395–1404.

    Article  MathSciNet  Google Scholar 

  • Yang, J. J., Strukov, D. B., & Stewart, D. R. (2013). Memristive devices for computing. Nature Nanotechnology, 8(1), 13–24.

    Article  Google Scholar 

  • Yu, Y., & Li, H. X. (2008). The synchronization of fractional-order Rössler hyperchaotic systems. Physica A: Statistical Mechanics and its Applications, 387(5), 1393–1403.

    Article  MathSciNet  Google Scholar 

  • Zambrano-Serrano, E., Campos-Canton, E., & Munoz-Pacheco, J. M. (2016). Strange attractors generated by a fractional order switching system and its topological horseshoe. Nonlinear Dynamics, 83(3), 1629–1641.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, P., & Huang, K. (2014). A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation. Communications in Nonlinear Science and Numerical Simulation, 19(6), 2005–2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Volos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Volos, C., Pham, VT., Zambrano-Serrano, E., Munoz-Pacheco, J.M., Vaidyanathan, S., Tlelo-Cuautle, E. (2017). Analysis of a 4-D Hyperchaotic Fractional-Order Memristive System with Hidden Attractors. In: Vaidyanathan, S., Volos, C. (eds) Advances in Memristors, Memristive Devices and Systems. Studies in Computational Intelligence, vol 701. Springer, Cham. https://doi.org/10.1007/978-3-319-51724-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51724-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51723-0

  • Online ISBN: 978-3-319-51724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics