Skip to main content

Some Numerical Methods

  • Chapter
  • First Online:
Inverse Problems for Partial Differential Equations

Part of the book series: Applied Mathematical Sciences ((AMS,volume 127 ))

  • 3326 Accesses

Abstract

In this chapter, we will briefly review some popular numerical methods widely used in practice. Of course it is not a comprehensive collection. We will demonstrate certain methods that are simple and widely used or, in our opinion, interesting and promising both theoretically and numerically. We observe that most of these methods have not been justified and in some cases even not rigorously tested numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agmon, S., Douglis, A., Nirenberg, L. Estimates near the boundary for the solutions of elliptic differential equations satisfying general boundary values, I. Comm. Pure Appl. Math., 12 (1959), 623–727.

    Article  MathSciNet  MATH  Google Scholar 

  2. Belishev, M.I. Recent progress in the boundary control method. Inverse Problems, 23 (2007), R1-R67.

    Article  MathSciNet  MATH  Google Scholar 

  3. Borcea, L., Druskin, V., Guevara Vasquez, F., Mamonov, A. Resistor network approaches to electrical impedance tomography. In “Inside Out II”, MSRI Publ., Cambridge Univ. Press, 60 (2012), 54–118.

    Google Scholar 

  4. Burger, M., Osher, S. A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math., 16 (2005), 263–301.

    Article  MathSciNet  MATH  Google Scholar 

  5. Calderon, A.P. On an inverse boundary value problem. “Seminar on numerical Analysis and Its Applications to Continuum Physics”, Rio de Janeiro, 1980, 65–73.

    Google Scholar 

  6. Cheney, M., Isaacson, D., Newell, J.C. Electrical impedance tomography SIAM Rew., 41 (1999), 85–101.

    Google Scholar 

  7. Colton, D., Haddar, H., Piana, M. The linear sampling method in inverse electromagnetic scattering theory. Inverse Problems, 19 (2003), S105–137.

    Article  MathSciNet  MATH  Google Scholar 

  8. Colton, D., Kirsch, A. A simple method for solving inverse scattering problems in the resonance region. Inverse Problems, 12 (1996), 383–395.

    Article  MathSciNet  MATH  Google Scholar 

  9. Colton, D., Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory. Appl. Math. Sc., 93, Springer Verlag, 2013.

    Google Scholar 

  10. Curtis, E., Morrow, J. Inverse Problems for electrical networks. World Scientific, 2000.

    Book  MATH  Google Scholar 

  11. DeLillo, T., Isakov, V., Valdivia, N., Wang, L. The detection of surface vibrations from interior acoustic measurements. Inverse Problems, 19 (2003), 507–525.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dobson, D., Santosa, F. Resolution and stability analysis of an inverse problem in electrical impedance tomography. SIAM J. Appl. Math., 54 (1994), 1542–1560.

    Article  MathSciNet  MATH  Google Scholar 

  13. Druskin, V., Knizhnerman, L. Gaussian spectral rules for the three-point second differences. I. A two-point positive definite problem in a semiinfinite domain. SIAM J. Numer. Anal., 37 (2000), 403–422.

    Google Scholar 

  14. Ekeland, I., Temam, R. Convex Analysis and Variational Problems. North-Holland, 1976.

    MATH  Google Scholar 

  15. Elayyan, A., Isakov, V. On the Inverse Diffusion Problem. SIAM J. Appl. Math., 57 (1997), 1737–1748.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hrycak, T., Isakov, V. Increased stability in the continuation of solutions of the Helmholtz equation. Inverse Problems, 20 (2004), 697–712.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ikehata, M. Reconstruction of shape of inclusion by boundary measurements. Comm. Part. Diff. Equat. 23 (1998), 1459–1474.

    Article  MathSciNet  MATH  Google Scholar 

  18. Isakov, V. On uniqueness of recovery of a discontinuous conductivity coefficient. Comm. Pure Appl. Math. 41 (1988), 865–877.

    Article  MathSciNet  MATH  Google Scholar 

  19. Isakov, V. Inverse Source Problems. Math. Surveys and Monographs Series, Vol. 34, AMS, Providence, R.I., 1990.

    Google Scholar 

  20. Isakov, V. On uniqueness in the inverse scattering problem. Comm. Part. Diff. Equat. 15 (1990), 1565–1581.

    Article  MathSciNet  MATH  Google Scholar 

  21. Isakov, V., Kindermann, S. Subspaces of stability in the Cauchy problem for the Helmholtz equation. Meth. Appl. Anal., 18 (2011), 1–30.

    MathSciNet  MATH  Google Scholar 

  22. Isakov, V., Lai, R.-Y., Wang, J.-N. Increasing stability for the Conductivity and Attenuation Coefficients. SIAM J. Math. Anal, 48 (2016), 569–594.

    Article  MathSciNet  MATH  Google Scholar 

  23. Isakov, V., Leung, S., Qian, J. A three-dimensional inverse gravimetry problem for ice with snow caps. Inv. Probl. Imag., 7 (2013), 523–545.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kirsch, A., Kress, R. Uniqueness in Inverse Obstacle Scattering. Inverse Problems 9, (1993), 285–299.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kirsch, A., Grinberg, N. The Factorization Method for Inverse Problems. Oxford Univ. Press, New York, 2008.

    MATH  Google Scholar 

  26. Klibanov, M.V., Rakesh. Numerical solution of a time- like Cauchy problem for the wave equation. Math. Meth. Appl. Sc., 15 (1992), 559–570.

    Google Scholar 

  27. Klibanov, M.V., Timonov, A. Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP, Utrecht, The Netherlands, 2004.

    Book  MATH  Google Scholar 

  28. Kohn, R., McKenney, A. Numerical implementation of a variational method for electrical impedance tomography. Inverse Problems, 9 (1990), 389–414.

    Article  MathSciNet  MATH  Google Scholar 

  29. Kohn, R., Vogelius, M. Relaxation of a variational method for impedance computed tomography. Comm. Pure Appl. Math., 40 (1987), 745–777.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kozlov, V.A., Maz’ya, V.G. On iterative procedures for solving ill-posed problems that preserve differential equations. Leningrad Math. J., 1 (1990), 1207–1228.

    MathSciNet  MATH  Google Scholar 

  31. Krein, M. On inverse problems for an inhomogeneous string. Dokl. Akad. Nauk SSSR, 82 (1952), 669–672.

    Google Scholar 

  32. Kusiak, S., Sylvester, J. The scattering support. Comm. Pure Appl. Math., 56 (2003), 1525–1548.

    Article  MathSciNet  MATH  Google Scholar 

  33. Kwon, O., Seo, J.K., Yoon, J.-R. A Real-Time Algorithm for Location Search of Discontinuous Conductivities with One Measurement. Comm. Pure Appl. Math., 55 (2002), 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  34. McLean, W. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000.

    MATH  Google Scholar 

  35. Morrey, C.B., Jr. Multiple Integrals in the Calculus of Variations. Springer, 1966.

    MATH  Google Scholar 

  36. Potthast, R. Point Sources and Multi poles in Inverse Scattering Theory. London, Chapman and Hill, 2001.

    Book  MATH  Google Scholar 

  37. Potthast, R., Sylvester, J., Kusiak, S. A ’range test’ for determining scatterers with unknown physical properties. Inverse Problems, 19 (2003), 533–547.

    Article  MathSciNet  MATH  Google Scholar 

  38. Santosa, F., Vogelius, M. A Back projection Algorithm for Electrical Impedance Tomography. SIAM J. of Appl Math., 50 (1990), 216–244.

    Article  MATH  Google Scholar 

  39. Somersalo, E., Cheney, M., Isaacson, D., Isaacson, E. Layer-stripping: a direct numerical method for impedance imaging. Inverse Problems, 7 (1991), 899–926.

    Article  MathSciNet  MATH  Google Scholar 

  40. Sylvester, J. A Convergent Layer Stripping Algorithm for the Radially Symmetric Impedance Tomography Problem. Comm. Part. Diff. Equat., 17 (1992), 1955–1994.

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu, S. The Helmholtz Equation Least Squares Theory for Reconstructing and Predicting Acoustic Radiation. Springer, 2015.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Isakov, V. (2017). Some Numerical Methods. In: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol 127 . Springer, Cham. https://doi.org/10.1007/978-3-319-51658-5_10

Download citation

Publish with us

Policies and ethics