Skip to main content

Challenges and Opportunities in Commercialization of Algal Biofuels

  • Chapter
  • First Online:
Algal Biofuels

Abstract

Recently algae have received considerable scientific attention as biofuel feedstock. However there are several concerns that remain to be answered about their overall environmental sustainability and economic feasibility. In order to ascertain the suitability of algal biofuels over fossil fuels and biofuels derived from other feedstocks life cycle based holistic assessment is critical. Several factors directly and indirectly affect the acceptability of biofuels derived from algae. This chapter compares the different unit operations and alternatives available for their completion to identify hotspots in algal biofuel production system that are likely to have a disproportionate effect on overall environmental and economic performance of algal biofuels. The idea of manipulating genetic makeup of algae for improved biomass and biofuel production and the concept of algal biorefinery have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44(20):7975–7980

    Article  CAS  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20(3):264–271

    Article  CAS  Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report (No. DOE/PC/93204–T5). Department of Civil Engineering, California University, Berkeley, CA

    Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88(10):3425–3431

    Article  CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1):313–321

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45(16):7060–7067

    Article  CAS  Google Scholar 

  • Bridgwater AV (2007) IEA bioenergy 27th update: biomass pyrolysis. Biomass Bioenergy 31:VII–XVIII

    Article  Google Scholar 

  • Brown MR, Dunstan GA, Norwood S, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32(1):64–73

    Article  CAS  Google Scholar 

  • Carvalho AP, Malcata FX (2005) Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Mar Biotechnol 7(4):381–388

    Article  CAS  Google Scholar 

  • Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89(5):1275–1288

    Article  CAS  Google Scholar 

  • Chandler D (2011) Teaching algae to make fuel: new process could lead to production of hydrogen using bioengineered microorganisms. Science daily (online article). http://www.sciencedaily.com/releases/2011/05/110524115144.html

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167(3):201–214

    Article  CAS  Google Scholar 

  • Contreras S, Soto MA, Toha JC (1979) Applied microalgae photosynthesis: discharge mechanisms in highly illuminated cells. Biotechnol Bioeng 21:159–165

    Article  CAS  Google Scholar 

  • Darzins A, Pienkos P, Edye L (2010) Current status and potential for algal biofuels production. A report to IEA Bioenergy Task, No. 39

    Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88(10):3524–3531

    Article  Google Scholar 

  • Davis RE, Fishman DB, Frank ED, Johnson MC, Jones SB, Kinchin CM, Skaggs RL, Venteris ER, Wigmosta MS (2014) Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale. Environ Sci Technol 48(10):6035–6042

    Article  CAS  Google Scholar 

  • Demirbas A (2006) Oily products from mosses and algae via pyrolysis. Energy Sources Part A 28(10):933–940

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51(12):2738–2749

    Article  CAS  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170

    Article  Google Scholar 

  • Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama SY (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73(12):1855–1857

    Article  CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31(6):1004–1012

    Article  CAS  Google Scholar 

  • Ewing M, Msangi S (2009) Biofuels production in developing countries: assessing trade-offs in welfare and food security. Environ Sci Pol 12(4):520–528

    Article  Google Scholar 

  • Fábregas J, Maseda A, Domínguez A, Otero A (2004) The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture. World J Microbiol Biotechnol 20(1):31–35

    Article  Google Scholar 

  • Gasafi E, Meyer L, Schebek L (2003) Using life-cycle assessment in process design. J Ind Ecol 7(3–4):75–91

    Article  CAS  Google Scholar 

  • Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488(7411):329–335

    Article  CAS  Google Scholar 

  • Gerbens-Leenes PW, Xu L, Vries DG, Hoekstra AY (2014) The blue water footprint and land use of biofuels from algae. Water Resour Res 50(11):8549–8563

    Article  CAS  Google Scholar 

  • Gordillo FJ, Goutx M, Figueroa FL, Niell FX (1998) Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J Appl Phycol 10(2):135–144

    Article  CAS  Google Scholar 

  • Graverholt O, Eriksen N (2007) Heterotrophic high-cell-density fedbatch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77(1):69–75

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  • Grobbelaar JU, Soeder CJ (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankton Res 7(4):497–506

    Article  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Appl Phycol 48(5):1057–1063

    Article  Google Scholar 

  • Guo SL, Zhao XQ, Wan C, Huang ZY, Yang YL, Alam MA, Ho SH, Bai FW, Chang JS (2013) Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresour Technol 145:285–289

    Article  CAS  Google Scholar 

  • Hall CA, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energ Policy 64:141–152

    Article  Google Scholar 

  • Handler RM, Canter CE, Kalnes TN, Lupton FS, Kholiqov O, Shonnard DR, Blowers P (2012) Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: Analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Res 1(1):83–92

    Article  CAS  Google Scholar 

  • Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O (2007) Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol Plant 131(1):10–21

    Article  CAS  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784. doi:10.4155/bfs.10.44

    Article  CAS  Google Scholar 

  • Harto C, Meyers R, Williams E (2010) Life cycle water use of low-carbon transport fuels. Energy Policy 38(9):4933–4944

    Article  Google Scholar 

  • Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45(1):399–404

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152(9):2529–2536

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66(1):73–79

    Article  CAS  Google Scholar 

  • Kumar D, Korstad J, Singh B (2015) Life cycle assessment of algal biofuels. In: Algae and environmental sustainability. Springer, New Delhi, India, pp 165–181

    Chapter  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  CAS  Google Scholar 

  • Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol 2011:141207

    Google Scholar 

  • Liu X, Saydah B, Eranki P, Colosi LM, Greg Mitchell B, Rhodes J, Clarens FA (2013) Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresour Technol 148:163–171

    Article  CAS  Google Scholar 

  • Luque R (2010) Algal biofuels: the eternal promise? Energy Environ Sci 3(3):254–257

    Article  CAS  Google Scholar 

  • McArdle P, Lindstrom P, Kalopedis S (2009) Emissions of greenhouse gases in the United States 2008. US Energy Information Administration, Office of Integrated Analysis and Forecasting (Retrieved), p 5

    Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226(5):1075–1086

    Article  CAS  Google Scholar 

  • Metting FB Jr (1996) Biodiversity and application of microalgae. J Ind Microbiol 17(5–6):477–489

    Article  CAS  Google Scholar 

  • Minowa T, Yokoyama SY, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74(12):1735–1738

    Article  CAS  Google Scholar 

  • Murphy R, Woods J, Black M, McManus M (2011) Global developments in the competition for land from biofuels. Food Policy 36:S52–S61

    Article  Google Scholar 

  • Nagarajan S, Chou SK, Cao S, Wu C, Zhou Z (2013) An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour Technol 145:150–156

    Article  CAS  Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energ Policy 37(9):3428–3437

    Article  Google Scholar 

  • Park KH, Lee CG (2001) Effectiveness of flashing light for increasing photosynthetic efficiency of microalgal cultures over a critical cell density. Biotechnol Bioprocess Eng 6:189–193

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FM, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  CAS  Google Scholar 

  • Pires JC, Alvim-Ferraz MC, Martins FG, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16(5):3043–3053

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  Google Scholar 

  • Pullin AS, Báldi A, Can OE, Dieterich M, Kati V, Livoreil B, Lövei G, Mihók B, Nevin O, Selva N, Sousa-Pinto I (2009) Conservation focus on Europe: major conservation policy issues that need to be informed by conservation science. Conserv Biol 23(4):818–824

    Article  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9(4):486–501

    Article  CAS  Google Scholar 

  • Roessler PG (1990) Purification and characterization of acetyl-CoA carboxylase from the diatom Cyclotella cryptica. Plant Physiol 92(1):73–78

    Article  CAS  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5(12):1532–1553

    Article  CAS  Google Scholar 

  • Sharpley AN, Troeger WW, Smith SJ (1991) The measurement of bioavailable phosphorus in agricultural runoff. J Environ Qual 20(1):235–238

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  CAS  Google Scholar 

  • Sills DL, Paramita V, Franke MJ, Johnson MC, Akabas TM, Greene CH, Tester JW (2013) Quantitative Uncertainty Analysis of Life Cycle Assessment for Algal Biofuel Production. Environ Sci Technol 47(2):687–94

    Google Scholar 

  • Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580

    Article  CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610. doi:10.1016/j.rser.2010.06.014

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102(1):26–34

    Article  CAS  Google Scholar 

  • Sorokin C, Krauss RW (1958) The effects of light intensity on the growth rates of green algae. Plant Physiol 33(2):109

    Article  CAS  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy & Fuel 24(7):4062–4077

    Article  CAS  Google Scholar 

  • Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energ Policy 38(10):5892–5901

    Article  Google Scholar 

  • Syers JK, Johnston AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin 18. Food and Agriculture Organization of the United Nations, Roma

    Google Scholar 

  • Tennessen DJ, Bula RJ, Sharkey TD (1995) Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynth Res 44:261–269

    Article  CAS  Google Scholar 

  • Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (bio) chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30(6):1405–1424

    Article  CAS  Google Scholar 

  • Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol 176(23):7320–7327

    Article  CAS  Google Scholar 

  • White DA, Pagarette A, Rooks P, Ali ST (2013) The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J Appl Phycol 25(1):153–165

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science (Washington) 329(5993):796–799

    Article  CAS  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbiodiesel production. Appl Microbiol Biotechnol 78(1):29–36

    Article  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165

    Article  CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Mr. Dipesh Kumar is thankful to UGC for providing Junior Research Fellowship (JRF). Dr. Bhaskar Singh is thankful to UGC for providing Research Start up Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, D., Singh, B., Sharma, Y.C. (2017). Challenges and Opportunities in Commercialization of Algal Biofuels. In: Gupta, S., Malik, A., Bux, F. (eds) Algal Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-319-51010-1_20

Download citation

Publish with us

Policies and ethics