Skip to main content

Fiber in Type 2 Diabetes Prevention and Management

  • Chapter
  • First Online:
  • 1708 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

The prevalence of prediabetes and diabetes has increased globally in parallel with the rising levels of obesity in adults and children, a phenomenon sometimes called diabesity. If this global trend continues, by 2030 an estimated one billion people are expected to have prediabetes and diabetes.

As much as 90% of diabetes risk management is attributed to modifiable risk factors such as diet and physical activity and their effect on increased risk of overweight and obesity.

Prospective cohort studies consistently show that increased intake of total fiber and cereal fiber and lower glycemic index and glycemic load diets is effective in reducing diabetes risk.

Meta-analyses of randomized controlled trials (RCTs) including people with prediabetes and diabetes consistently show that increased fiber intake from diets and supplements significantly lowers fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) levels compared to control diets.

Whole oat products such as oatmeal and psyllium, a gel-forming, low fermentable fiber supplement, have been shown clinically to be among the most effective fiber sources in lowering FBG and HbA1c in diabetic and prediabetic individuals compared to placebo.

The primary mechanisms related to adequate fiber intake and diabetes prevention and management are (1) reducing the risk of obesity and visceral fat accumulation, (2) promoting and maintaining a healthy microbiota ecosystem, (3) attenuating elevated systemic inflammation, and (4) controlling postprandial and fasting glycemic responses and protecting against insulin resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Murray MT. Diabetes mellitus. In: Pizzorno JE, Murray MT, editors. Textbook of natural medicine. 4th ed. Philadelphia: Elsevier; 2013.; Chapter 161. p. 1320–48.

    Chapter  Google Scholar 

  2. Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diab Res Clin Prac. 2014;103:137–49.

    Article  CAS  Google Scholar 

  3. Bullard KM, Saydah SH, Imperatore G, et al. Secular changes in U.S. prediabetes prevalence defined by hemoglobin A1c and fasting plasma glucose: National Health and Nutrition Examination Surveys, 1999–2010. Diabetes Care. 2013;36(8):2286–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tabák AG, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for developing diabetes. Lancet. 2012;379(9833):2279–90.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ley SH, Hamdy O, Mahan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383:1999–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. FB H, Manson E, Stampfer MJ. Diet, lifestyle and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345(11):790–7.

    Article  Google Scholar 

  7. Jecht M. Overall mortality risk in patients with type 2 diabetes. Diabetologe. 2012;8:490–1.

    Article  Google Scholar 

  8. Wei M, Gaskill SP, Haffner SM, Stern MP. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality – The San Antonio Heart Study. Diabetes Care. 1998;21:1167–72.

    Article  CAS  PubMed  Google Scholar 

  9. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.

    Article  CAS  PubMed  Google Scholar 

  10. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26:377–82.

    Google Scholar 

  11. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  CAS  PubMed  Google Scholar 

  12. Pan XR, Li GW, Wang JX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance – The Da Qing IGT and diabetes study. Diabetes Care. 1997;20:537–44.

    Article  CAS  PubMed  Google Scholar 

  13. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.

    Article  CAS  PubMed  Google Scholar 

  14. Alhazmi A, Stojanovski E, McEvoy M, Garg ML. The association between dietary patterns and type 2 diabetes: a systematic review and meta-analysis of cohort studies. J Hum Nutr Diet. 2014;27:251–60.

    Article  CAS  PubMed  Google Scholar 

  15. Evert AB, Boucher JL, Cypress M, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37(Suppl 1):S120–43.

    Article  PubMed  Google Scholar 

  16. Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. Gastroenterol Hepatol. 2016;31(5):936–44.

    Article  CAS  Google Scholar 

  17. Dahl WJ, Steward ML. Position of the academy of nutrition and dietetics: health implications of dietary fiber. J Acad Nutr Diet. 2015;115:1861–70.

    Article  PubMed  Google Scholar 

  18. Feldman AL, Long GH, Johansson I, et al. Change in lifestyle behavior and diabetes risk: evidence from a population-based cohort study with 10 year follow-up. Int J Behav Nutr Phys Act. 2017;14:39. https://doi.org/10.1186/s12966-017-0489-8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim Y, Je Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol. 2014;180(6):565–73.

    Article  PubMed  Google Scholar 

  20. Trowell H. Diabetes mellitus and dietary fiber of starchy foods. Am J Clin Nutr. 1978;10:S53–7.

    Google Scholar 

  21. Burkitt DP. Some diseases characteristic of modern western civilizations. Br Med J. 1973;1:274–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salas-Salvado J, Martinez-Gonzalez MA, Bullo M, Ros E. The role of diet in the prevention of type 2 diabetes. Nutr Metab Cardiovasc Dis. 2011;21:32–48.

    Article  CAS  Google Scholar 

  23. Kuijsten A, Aune D, Schulze MB, et al. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia. 2015;58:1394–408.

    Article  CAS  Google Scholar 

  24. Yao B, Fang H, Xu W, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol. 2014;29(2):79–88.

    Article  CAS  PubMed  Google Scholar 

  25. Bhupathiraju SN, Tobias DK, Malik VS, et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am J Clin Nutr. 2014;100:218–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. AlEssa HB, Ley SH, Rosner B, et al. High fiber and low starch intakes are associated with circulating intermediate biomarkers of type 2 diabetes among women. J Nutr. 2016;146:306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pastorino S, Richards M, Pierce M, Ambrosini GL. A high-fat, high-glycaemic index, low-fibre dietary pattern is prospectively associated with type 2 diabetes in a British birth cohort. Br J Nutr. 2016;115(9):1632–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qiao Y, Tinker L, Olendzki BC, et al. Racial/ethnic disparities in association between dietary quality and incident diabetes in postmenopausal women in the United States: the Women’s Health Initiative 1993–2005. Ethn Health. 2014;19:328–47.

    Article  PubMed  Google Scholar 

  29. Hopping BN, Erber E, Grandinetti A, et al. Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii. J Nutr. 2010;140:68–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schulze MB, Liu S, Rimm EB, et al. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr. 2004;80:348–56.

    CAS  PubMed  Google Scholar 

  31. Schulze MB, Schulz M, Heidemann C, et al. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med. 2007;167:956–65.

    Article  CAS  PubMed  Google Scholar 

  32. Salmeron J, Ascherio A, Rimm EB, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care. 1997;20:545–50.

    Article  CAS  PubMed  Google Scholar 

  33. Whincup PH, Donin AS. Cereal fibre and type 2 diabetes: time now for randomised controlled trials? Diabetologia. 2015;58:1383–5.

    Article  CAS  PubMed  Google Scholar 

  34. Gibb RD, Johnson W, McRorie JW, et al. Psyllium fiber improves glycemic control proportional to loss of glycemic control: a meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus. Am J Clin Nutr. 2015;102:1604–14.

    Article  CAS  PubMed  Google Scholar 

  35. Silva FM, Kramer CK, de Almeida JC, et al. Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev. 2013;71(12):790–801.

    Article  PubMed  Google Scholar 

  36. Post RE, Mainous AG, King DE, Simpson KN. Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. J Am Board Fam Med. 2012;25:16–23.

    Article  PubMed  Google Scholar 

  37. Wolfram T, Ismail-Beigi F. Efficacy of high-fiber diets in the management of type 2 diabetes mellitus. Endocr Pract. 2011;17:132–42.

    Article  PubMed  Google Scholar 

  38. Weinhold KR, Miller CK, Marrero DG, et al. A randomized controlled trial translating the diabetes prevention program to a university worksite, Ohio, 2012–2014. Prev Chronic Dis. 2015;12:E210. doi:10.5888/pcd12.150301.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Weickert MO, Roden M, Isken F, et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr. 2011;94:459–71.

    Article  CAS  PubMed  Google Scholar 

  40. Cicero A, Derosa G, Bove M, et al. Psyllium improves dyslipidemaemia, hyperglycaemia and hypertension, while guar gum reduces body weight more rapidly in patients affected by metabolic syndrome following an AHA Step 2 diet. Med J Nutr Metab. 2010;3:47–54.

    Article  Google Scholar 

  41. Kim H, Stote KS, Behall KM, et al. Glucose and insulin responses to whole grain breakfasts varying in soluble fiber, beta-glucan: a dose response study in obese women with increased risk for insulin resistance. Eur J Nutr. 2009;48:170–5.

    Article  CAS  PubMed  Google Scholar 

  42. Weickert MO, Möhlig M, Schöfl C, et al. Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care. 2006;29:775–80.

    Article  CAS  PubMed  Google Scholar 

  43. Nowotny B, Zahiragic L, Bierwagen A, et al. Low-energy diets differing in fibre, red meat and coffee intake equally improve insulin sensitivity in type 2 diabetes: a randomised feasibility trial. Diabetologia. 2015;58:255–64.

    Article  CAS  PubMed  Google Scholar 

  44. Cugnet-Anceau C, Nazare JA, Biorklund M, et al. A controlled study of consumption of beta-glucan-enriched soups for 2 months by type 2 diabetic free-living subjects. Br J Nutr. 2010;103:422–8.

    Article  CAS  PubMed  Google Scholar 

  45. Jenkins DJ, Kendall CW, McKeown-Eyssen G, et al. Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes: a randomized trial. JAMA. 2008;300:2742–53.

    Article  CAS  PubMed  Google Scholar 

  46. Jenkins DJ, Kendall CW, Augustin LS, et al. Effect of wheat bran on glycemic control and risk factors for cardiovascular disease in type 2 diabetes. Diabetes Care. 2002;25:1522–8.

    Article  CAS  PubMed  Google Scholar 

  47. Chandalia M, Garg A, Lutjohann D, von Bergmann K, et al. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000;342:1392–8.

    Article  CAS  PubMed  Google Scholar 

  48. Ley SH, Ardisson Korat AV, Sun Q, et al. Contribution of the Nurses’ Health Studies to uncovering risk factors for type 2 diabetes: diet, lifestyle, biomarkers, and genetics. Am J Public Health. 2016;106(9):e1–7. doi:10.2105/AJPH.2016.303314.

    Article  Google Scholar 

  49. Vazquez G, Duval S, Jacobs DR Jr, Silventoinen K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev. 2007;29:115–28.

    Article  PubMed  Google Scholar 

  50. Hu FB. Metabolic consequences of obesity. Obesity epidemiology. New York: Oxford University Press; 2008. p. 149–73.

    Book  Google Scholar 

  51. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104:787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sattar N, Gill JMR. Type 2 diabetes as a disease of ectopic fat? BMC Med. 2014;12:123.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014;371(12):1131–41.

    Article  PubMed  CAS  Google Scholar 

  54. Hardy OT, Michael P, Czecha MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes. 2012;19(2):81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karl JP, Saltzman E. The role of whole grains in body weight regulation. Adv Nutr. 2012;3:697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Food and Agriculture Organization of the United Nations. Food energy-methods of analysis and conversion factors. FAO Food and Nutrition Paper. 2003;77: 59.

    Google Scholar 

  57. Livesey G. Energy values of unavailable carbohydrate and diets: an inquiry and analysis. Am J Clin Nutr. 1990;51(4):617–37.

    CAS  PubMed  Google Scholar 

  58. Oku T, Nakamura S. Evaluation of the relative available energy of several dietary fiber preparations using breath hydrogen evolution in healthy humans. J Nutr Sci Vitaminol. 2014;60:246–54.

    Article  CAS  PubMed  Google Scholar 

  59. Miles CW. The metabolizable energy of diets differing in dietary fat and fiber measured in humans. J Nutr. 1992;122:306–11.

    CAS  PubMed  Google Scholar 

  60. Miles CW, Kelsay JL, Wong NP. Effect of dietary fiber on the metabolizable energy of human diets. J Nutr. 1988;118:1079–81.

    Google Scholar 

  61. Baer DJ, Rumpler WV, Miles CW, Fahey GC Jr. Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J Nutr. 1997;127:579–86.

    CAS  PubMed  Google Scholar 

  62. Pereira MA, Ludwig DS. Dietary fiber and body weight regulation. Observations and mechanism. Pediatr Clin North Am. 2001;48(4):969–80.

    Article  CAS  PubMed  Google Scholar 

  63. Martinez-Rodriguez R, Gil A. Nutrient-mediated modulation of incretin gene expression: a systematic review. Nutr Hosp. 2012;27:46–53.

    CAS  PubMed  Google Scholar 

  64. Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes (Lond). 2013;37:625–33.

    Article  CAS  Google Scholar 

  65. Sanchez D, Miguel M, Aleixandre A. Dietary fiber, gut peptides, and adipocytokines. J Med Food. 2012;15(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  66. Clark MJ, Slavin JL. The effect of fiber on satiety and food intake: a systematic review. J Am Coll Nutr. 2013;32(3):200–11.

    Article  CAS  PubMed  Google Scholar 

  67. Kellow NJ, Coughlan MT, Reid CM. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014;111:1147–61.

    Article  CAS  PubMed  Google Scholar 

  68. Vitaglione P, Lumaga RB, Stanzione A, et al. β-Glucan-enriched bread reduces energy intake and modifies plasma ghrelin and peptide YY concentrations in the short term. Appetite. 2009;53:338–44.

    Article  CAS  PubMed  Google Scholar 

  69. Holt SH, Miller JB. Particle size, satiety and the glycaemic response. Eur J Clin Nutr. 1994;48:496–502.

    CAS  PubMed  Google Scholar 

  70. Bodinham CL, Hitchen KL, Youngman PJ, et al. Short-term effects of whole-grain wheat on appetite and food intake in healthy adults: a pilot study. Br J Nutr. 2011;106:327–30.

    Article  CAS  PubMed  Google Scholar 

  71. Rebello CJ, Chu Y-F, Johnson WD, et al. The role of meal viscosity and oat β-glucan characteristics in human appetite control: a randomized crossover trial. Nutr J. 2014;13:49. doi:10.1186/1475-2891-13-49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. de Oliveira MC, Sichieri R, Mozzer VR. A low energy dense diet adding fruit reduces weight and energy intake in women. Appetite. 2008;51(2):291–5.

    Article  PubMed  Google Scholar 

  73. Forsberg T, Åman P, Landberg R. Effects of whole grain rye crisp bread for breakfast on appetite and energy intake in a subsequent meal: two randomised controlled trials with different amounts of test foods and breakfast energy content. Nutr J. 2014;13:26. doi:10.1186/1475-2891-13-26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Flood-Obbagy JE, Rolls BJ. The effect of fruit in different forms on energy intake and satiety at a meal. Appetite. 2009;52(2):416–22.

    Article  PubMed  Google Scholar 

  75. Moorhead SA, Welch RW, Barbara M, et al. The effects of the fibre content and physical structure of carrots on satiety and subsequent intakes when eaten as part of a mixed meal. Br J Nutr. 2006;96(3):587–95.

    Article  CAS  Google Scholar 

  76. Leahy KE, Birch LL, Fisher JO, Rolls BJ. Reductions in entrée energy density increase children’s vegetable intake and reduce energy intake. Obesity. 2008;16:1559–65.

    Article  PubMed  Google Scholar 

  77. Tan SY, Mattes RD. Appetitive, dietary and health effects of almonds consumed with meals or as snacks: a randomized, controlled trial. Eur J Clin Nutr. 2013;67:1205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li SS, Kendall CWC, de Souza RJ, et al. Dietary pulses, satiety and food intake: a systematic review and meta-analysis of acute feeding trials. Obesity. 2014;22:1773–80.

    Article  PubMed  Google Scholar 

  79. Lafond DW, Greaves KA, Maki KC, et al. Effects of two dietary fibers as part of ready-to-eat cereal (RTEC) breakfasts on perceived appetite and gut hormones in overweight women. Forum Nutr. 2015;7:1245–66.

    CAS  Google Scholar 

  80. Fogelholm M, Anderssen S, Gunnarsdottir I, Lahti-Koski M. Dietary macronutrients and food consumption as determinants of long-term weight change in adult populations: a systematic literature review. Food Nutr Res. 2012;56 doi:10.3402/fnr.v56i0.19103.

  81. King DE, Mainous AG, Lambourne CA. Trends in dietary fiber intake in the United States, 1999-2008. J Acad Nutr Diet. 2012;112:642–8.

    Article  PubMed  Google Scholar 

  82. Howarth NC, Huang TT, Roberts SB, McCrory MA. Dietary fiber and fat are associated with excess weight in young and middle-aged adults. J Am Diet Assoc. 2005;105(9):1365–72.

    Article  PubMed  Google Scholar 

  83. Tucker LA, Thomas KS. Increasing total fiber intake reduces risk of weight and fat gains in women. J Nutr. 2009;139:576–81.

    Article  CAS  PubMed  Google Scholar 

  84. Breneman CB, Tucker L. Dietary fibre consumption and insulin resistance – the role of body fat and physical activity. Br J Nutr. 2013;110:375–83.

    Article  CAS  PubMed  Google Scholar 

  85. Lovejoy J, DiGirolamo M. Habitual dietary intake and insulin sensitivity in lean and obese adults. Am J Clin Nutr. 1992;55:1174–9.

    CAS  PubMed  Google Scholar 

  86. Romaguera D, Angquist L, Du H, et al. Dietary determinants of changes in waist circumference adjusted for body mass index – a proxy measure of visceral adiposity. PLoS One. 2010;5(7):e11588. doi:10.1371/journal.pone.0011588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hairston KG, Vitolins MZ, Norris JM, Anderson AM, Hanley AJ, Wagenknecht LE. Lifestyle factors and 5-year abdominal fat accumulation in a minority cohort: the IRAS family study. Obesity. 2012;20(2):421–7.

    Article  CAS  PubMed  Google Scholar 

  88. Koh-Banerjee P, Chu N-F, Spiegelman D, et al. Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9-y gain in waist circumference among 16,587 US men. Am J Clin Nutr. 2003;78:719–27.

    CAS  PubMed  Google Scholar 

  89. Mollard RC, Senechal M, MacIntosh AC, et al. Dietary determinants of hepatic steatosis and visceral adiposity in overweight and obese youth at risk of type 2 diabetes. Am J Clin Nutr. 2014;99:804–12.

    Article  CAS  PubMed  Google Scholar 

  90. Parikh S, Pollock NK, Bhagatwala J, et al. Adolescent fiber consumption is associated with visceral fat and inflammatory markers. J Clin Endocrinol Metab. 2012;97(8):1451–7.

    Article  CAS  Google Scholar 

  91. Ma Y, Olendzki BC, Wang J, et al. Single-component versus multi-component dietary goals for the metabolic syndrome a randomized trial. Ann Intern Med. 2015;162:248–57.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lindstrom J, Peltonen M, Eriksson JG, et al. High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish Diabetes Prevention Study. Diabetologia. 2006;49:912–20.

    Article  CAS  PubMed  Google Scholar 

  93. Park MH, Kim DH, Lee EK, et al. Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch Pharm Res. 2014;37:1507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiao J, J-Y X, Zhang W, et al. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: a meta-analysis of randomized controlled trials. Int J Food Sci Nutr. 2015;66(1):114–9.

    Article  CAS  PubMed  Google Scholar 

  95. King DE, Mainous AG, Egan BM, et al. Fiber and C-reactive protein in diabetes, hypertension, and obesity. Diabetes Care. 2005;28(6):1487–9.

    Article  CAS  PubMed  Google Scholar 

  96. Lopez-Garcia E, Schulze MB, Fung TT, et al. Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr. 2004;80:1029–35.

    CAS  PubMed  Google Scholar 

  97. Silva FM, de Almeida JC, Feoli AM. Effect of diet on adiponectin levels in blood. Nutr Rev. 2011;69(10):599–612.

    Article  PubMed  Google Scholar 

  98. Baothman OA, Zamzami MA, Taher I, et al. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis. 2016;15:108. doi:10.1186/s12944-016-0278-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Han JL, Lin HL. Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World J Gastroenterol. 2014;20(47):17737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Serino M, Fernandez-Real JM, Garcıa Fuentes E, et al. The gut microbiota profile is associated with insulin action in humans. Acta Diabetol. 2013;50:753–61.

    Article  CAS  PubMed  Google Scholar 

  101. Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. doi:10.1371/journal.pone. 0009085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.

    Article  CAS  PubMed  Google Scholar 

  103. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

    Article  CAS  PubMed  Google Scholar 

  104. Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014;5(19):1–10.

    Google Scholar 

  105. Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013;27:73–83.

    Article  CAS  PubMed  Google Scholar 

  106. Milani C, Ferrario C, Turron F, et al. The human gut microbiota and its interactive connections to diet. J Hum Nutr Diet. 2016;29(5):539–46. doi:10.1111/jhn.12371.

    Article  CAS  PubMed  Google Scholar 

  107. Bozzetto L, Annuzzi G, Ragucci M, et al. Insulin resistance, postprandial GLP-1 and adaptive immunity are the main predictors of NAFLD in a homogeneous population at high cardiovascular risk. Nutr Metab Cardiovasc Dis. 2016;26(7):623–9.

    Article  CAS  PubMed  Google Scholar 

  108. Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediat Inflamm. 2014;2014:9. doi:10.1155/2014/162021.

    Google Scholar 

  109. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60:470–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Roelofsen H, Priebe MG, Vonk RJ, et al. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects. Eur J Clin Investig. 2012;42(4):357–64.

    Article  CAS  Google Scholar 

  111. Holscher HD, Caporaso JG, Hooda S, Swanson KS, et al. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr. 2015;10(1):55–64.

    Article  CAS  Google Scholar 

  112. Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5:765–75.

    Article  CAS  PubMed  Google Scholar 

  113. Fallucca F, Fontana L, Fallucca S, Pianesi M. Gut microbiota and Ma-Pi 2 macrobiotic diet in the treatment of type 2 diabetes. World J Diabetes. 2015;6(3):403–11.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Karimi P, Farhangi MA, Sarmadi B, et al. The therapeutic potential of resistant starch in modulation of insulin resistance, endotoxemia, oxidative stress and antioxidant biomarkers in women with type 2 diabetes: a randomized controlled clinical trial. Ann Nutr Metab. 2016;68(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  115. Bodinham CL, Smith L, Thomas EL, et al. Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr Connect. 2014;3:75–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aliasgharzadeh A, Khalili M, Mirtaheri E, et al. A combination of prebiotic inulin and oligofructose improve some cardiovascular disease risk factors in women with type 2 diabetes: a randomized controlled clinical trial. Adv Pharm Bull. 2015;5(4):507–14.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Esposito K, Marfella R, Ciotola M, et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome. A randomized trial. JAMA. 2004;292(12):1440–6.

    Article  CAS  PubMed  Google Scholar 

  118. Pal S, Khossousi A, Binns C, et al. The effect of a fibre supplement compared to a healthy diet on body composition, lipids, glucose, insulin and other metabolic syndrome risk factors in overweight and obese individuals. Br J Nutr. 2011;105:90–100.

    Article  CAS  PubMed  Google Scholar 

  119. Thomas DE, Elliott EJ. The use of low-glycaemic index diets in diabetes control. Br J Nutr. 2010;104:797–802.

    Article  CAS  PubMed  Google Scholar 

  120. U.S. Department of Health and Human Services. Guidance for industry: diabetes mellitus: developing drugs and therapeutic biologics for treatment and prevention. 2008. http://www.fda.gov/cder. Accessed 28 Aug 2016.

  121. Stratton IM, Adler AI, Neil AW, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Heikkila HM, Krachler B, Rauramaa R, Schwab US. Diet, insulin secretion and insulin sensitivity – the Dose–Responses to Exercise Training (DR’s EXTRA) Study. Br J Nutr. 2014;112:1530–41.

    Article  PubMed  CAS  Google Scholar 

  123. Jenkins DJ, Leeds AR, Gassull MA, Cochet B, Alberti GM. Decrease in postprandial insulin and glucose concentration by guar and pectin. Ann Intern Med. 1977;86(1):20–3.

    Article  CAS  PubMed  Google Scholar 

  124. Sierra M, Garcia JJ, Fernandez N, et al. Effects of ispaghula husk and guar gum on postprandial glucose and insulin concentrations in healthy subjects. Eur J Clin Nutr. 2001;55:235–43.

    Article  CAS  PubMed  Google Scholar 

  125. Behme MT, Dupre J. All bran vs corn flakes: plasma glucose and insulin response in young females. Am J Clin Nutr. 1989;50:1240–3.

    CAS  PubMed  Google Scholar 

  126. Maki KC, Pelkman CL, Finocchiaro ET. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr. 2012;142:717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Heaton KW, Marcus SN, Emmett PM, Bolton CH. Particle size of wheat, maize, and oat test meals: effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro. Am J Clin Nutr. 1988;47:675–82.

    CAS  PubMed  Google Scholar 

  128. McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1. Nutr Today. 2015;50(2):82–9.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Weickert MO, Pfeiffer AFH. Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr. 2008;138:439–42.

    CAS  PubMed  Google Scholar 

  130. He LX, Zhao YS, Li Y. The difference between oats and beta-glucan extract intake in the management of HbAlc, fasting glucose and insulin sensitivity: a meta-analysis of randomized controlled trials. Food Funct. 2016;7(3):1413–28.

    Article  CAS  PubMed  Google Scholar 

  131. Hou Q, Li Y, Li L, et al. The metabolic effects of oats intake in patients with type 2 diabetes: a systematic review and meta-analysis. Nutrients. 2015;7:10369–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li X, Cai X, Ma X, et al. Short- and long-term effects of wholegrain oat intake on weight management and glucolipid metabolism in overweight type-2 diabetics: a randomize control trial. Nutrients. 2016;8:549.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix 1. Fifty High-Fiber Foods Ranked by Amount of Fiber Per Standard Food Portiona

Appendix 1. Fifty High-Fiber Foods Ranked by Amount of Fiber Per Standard Food Portiona

Food

Standard portion size

Dietary fiber (g)

Calories (kcal)

Energy density (calories/g)

High-fiber bran ready-to-eat cereal

1/3–3/4 cup (30 g)

9.1–14.3

60–80

2.0–2.6

Navy beans, cooked

1/2 cup cooked (90 g)

9.6

127

1.4

Small white beans, cooked

1/2 cup (90 g)

9.3

127

1.4

Shredded wheat ready-to-eat cereal

1–1 1/4 cups (50–60 g)

5.0–9.0

155–220

3.2–3.7

Black bean soup, canned

1/2 cup (130 g)

8.8

117

0.9

French beans, cooked

1/2 cup (90 g)

8.3

114

1.3

Split peas, cooked

1/2 cup (100 g)

8.2

114

1.2

Chickpeas (garbanzo) beans, canned

1/2 cup (120 g)

8.1

176

1.4

Lentils, cooked

1/2 cup (100 g)

7.8

115

1.2

Pinto beans, cooked

1/2 cup (90 g)

7.7

122

1.4

Black beans, cooked

1/2 cup (90 g)

7.5

114

1.3

Artichoke, global or French, cooked

1/2 cup (84 g)

7.2

45

0.5

Lima beans, cooked

1/2 cup (90 g)

6.6

108

1.2

White beans, canned

1/2 cup (130 g)

6.3

149

1.1

Wheat bran flakes ready-to-eat cereal

3/4 cup (30 g)

4.9–5.5

90–98

3.1–3.3

Pear with skin

1 medium (180 g)

5.5

100

0.6

Pumpkin seeds. Whole, roasted

1 ounce (about 28 g)

5.3

126

4.5

Baked beans, canned, plain

1/2 cup (125 g)

5.2

120

0.9

Soybeans, cooked

1/2 cup (90 g)

5.2

150

1.7

Plain rye wafer crackers

2 wafers (22 g)

5.0

73

3.3

Avocado, Hass

1/2 fruit (68 g)

4.6

114

1.7

Apple, with skin

1 medium (180 g)

4.4

95

0.5

Green peas, cooked (fresh, frozen, canned)

1/2 cup (80 g)

3.5–4.4

59–67

0.7–0.8

Refried beans, canned

1/2 cup (120 g)

4.4

107

0.9

Mixed vegetables, cooked from being frozen

1/2 cup (45 g)

4.0

59

1.3

Raspberries

1/2 cup (65 g)

3.8

32

0.5

Blackberries

1/2 cup (65 g)

3.8

31

0.4

Collards, cooked

1/2 cup (95 g)

3.8

32

0.3

Soybeans, green, cooked

1/2 cup (75 g)

3.8

127

1.4

Prunes, pitted, stewed

1/2 cup (125 g)

3.8

133

1.1

Sweet potato, baked

1 medium (114 g)

3.8

103

0.9

Multigrain bread

2 slices regular (52 g)

3.8

140

2.7

Figs, dried

1/4 cup (about 38 g)

3.7

93

2.5

Potato baked, with skin

1 medium (173 g)

3.6

163

0.9

Popcorn, air-popped

3 cups (24 g)

3.5

93

3.9

Almonds

1 ounce (about 28 g)

3.5

164

5.8

Whole wheat spaghetti, cooked

1/2 cup (70 g)

3.2

87

1.2

Sunflower seed kernels, dry roasted

1 ounce (about 28 g)

3.1

165

5.8

Orange

1 medium (130 g)

3.1

69

0.5

Banana

1 medium (118 g)

3.1

105

0.9

Oat bran muffin

1 small (66 g)

3.0

178

2.7

Vegetable soup

1 cup (245 g)

2.9

91

0.4

Dates

1/4 cup (about 38 g)

2.9

104

2.8

Pistachios, dry roasted

1 ounce (about 28 g)

2.8

161

5.7

Hazelnuts or filberts

1 ounce (about 28 g)

2.7

178

6.3

Peanuts, oil roasted

1 ounce (about 28 g)

2.7

170

6.0

Quinoa, cooked

1/2 cup (90 g)

2.7

92

1.0

Broccoli, cooked

1/2 cup (78 g)

2.6

27

0.3

Potato baked, without skin

1 medium (145 g)

2.3

145

1.0

Baby spinach leaves

3 ounces (90 g)

2.1

20

0.2

Blueberries

1/2 cup (74 g)

1.8

42

0.6

Carrot, raw or cooked

1 medium (60 g)

1.7

25

0.4

  1. aDietary Guidelines Advisory Committee. Scientific Report of the 2010 Advisory Guidelines Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture Part B. Section 2: Total Diet. 2010; Table B2.4
  2. Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Advisory Guidelines Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. 2015; 97, 98; Table D1.8
  3. USDA National Nutrient Database for Standard Reference, Release 27 http://www.ars.usda.gov/nutrientdata. Accessed 17 February 2015

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dreher, M.L. (2018). Fiber in Type 2 Diabetes Prevention and Management. In: Dietary Fiber in Health and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-50557-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50557-2_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-50555-8

  • Online ISBN: 978-3-319-50557-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics