Skip to main content

How Hippocampal Memory Shapes, and Is Shaped by, Attention

  • Chapter
  • First Online:
The Hippocampus from Cells to Systems

Abstract

Attention has historically been studied in the context of sensory systems, with the aim of understanding how information in the environment affects the deployment of attention and how attention in turn affects the perception of this information. More recently, there has been burgeoning interest in how long-term memory can serve as a cue for attention, and ways in which attention influences long-term memory encoding and retrieval. In this chapter, we highlight this emerging body of human behavioral, neuroimaging, and neuropsychological work that elucidates these bidirectional interactions between attention and memory. Special emphasis will be given to recent findings on how the quintessential “memory system” in the brain—the hippocampus—influences and is influenced by attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aly M, Turk-Browne NB (2016a) Attention stabilizes representations in the human hippocampus. Cereb Cortex 26:783–796

    PubMed  Google Scholar 

  • Aly M, Turk-Browne NB (2016b) Attention promotes episodic encoding by stabilizing hippocampal representations. Proc Natl Acad Sci 113:E420–E429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson MC, Levy BJ (2009) Suppressing unwanted memories. Curr Direct Psychol Sci 18:189–194

    Article  Google Scholar 

  • Anderson MC, Ochsner KN, Kuhl B, Cooper J, Robertson E, Gabrieli SW, Glover GH, Gabrieli JDE (2004) Neural systems underlying the suppression of unwanted memories. Science 303:232–235

    Article  CAS  PubMed  Google Scholar 

  • Bar M (2004) Visual objects in context. Nat Rev Neurosci 5:617–629

    Article  CAS  PubMed  Google Scholar 

  • Becker MW, Rasmussen IP (2008) Guidance of attention to objects and locations by long-term memory of natural scenes. J Exp Psychol Learn Mem Cogn 34:1325–1338

    Article  PubMed  Google Scholar 

  • Brazhnik ES, Muller RU, Fox SE (2003) Muscarinic blockade slows and degrades the location-specific firing of hippocampal pyramidal cells. J Neurosci 23:611–621

    CAS  PubMed  Google Scholar 

  • Brewer JB, Zhao Z, Desmond JE, Glover GH, Gabrieli JDE (1998) Making memories: brain activity that predicts how well visual experience will be remembered. Science 281:1185–1187

    Article  CAS  PubMed  Google Scholar 

  • Brockmole JR, Henderson JM (2006) Using real-world scenes as contextual cues for search. Vis Cogn 13:99–108

    Article  Google Scholar 

  • Brown MW, Aggleton JP (2001) Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci 2:51–61

    Article  CAS  PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Bussey TJ, Saksida LM (2005) Object memory and perception in the medial temporal lobe: an alternative approach. Curr Opin Neurobiol 15:730–737

    Article  CAS  PubMed  Google Scholar 

  • Carr VA, Engel SA, Knowlton BJ (2013) Top-down modulation of hippocampal encoding activity as measured by high-resolution functional MRI. Neuropsychologia 51:1829–1837

    Article  PubMed  Google Scholar 

  • Cherry EC (1953) Experiments on the recognition of speech with one and two ears. J Acoust Soc Am 25:975

    Article  Google Scholar 

  • Chun MM (2000) Contextual cueing of visual attention. Trends Cogn Sci 4:170–178

    Article  CAS  PubMed  Google Scholar 

  • Chun MM, Jiang Y (1998) Contextual cuing: implicit learning and memory of visual context guides spatial attention. Cogn Psychol 36:28–71

    Article  CAS  PubMed  Google Scholar 

  • Chun MM, Phelps EA (1999) Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nat Neurosci 2:844–847

    Article  CAS  PubMed  Google Scholar 

  • Chun MM, Turk-Browne NB (2007) Interactions between attention and memory. Curr Opin Neurobiol 17:177–184

    Article  CAS  PubMed  Google Scholar 

  • Ciaramelli E, Lin O, Moscovitch M (2009) Episodic memory for spatial context biases spatial attention. Exp Brain Res 192:511–520

    Article  PubMed  Google Scholar 

  • Cohen NJ, Eichenbaum H (1993) Memory, amnesia, and the hippocampal system. MIT Press, Cambridge, MA

    Google Scholar 

  • Cosman JD, Vecera SP (2013a) Context-dependent control over attentional capture. J Exp Psychol Hum Percept Perform 39:836–848

    Article  PubMed  Google Scholar 

  • Cosman JD, Vecera SP (2013b) Learned control over distraction is disrupted in amnesia. Psychol Sci 24:1585–1590

    Article  PubMed  PubMed Central  Google Scholar 

  • Craik FI (2001) Effects of dividing attention on encoding and retrieval processes. In: Roediger HL, Nairne JS, Neath I (eds) The nature of remembering: essays in honor of Robert G. Crowder. American Psychological Association, Washington, DC, pp 55–68

    Chapter  Google Scholar 

  • Craik FI, Govoni R, Naveh-Benjamin M, Anderson MD (1996) The effects of divided attention on encoding and retrieval processes in human memory. J Exp Psychol Gen 125:159–180

    Article  CAS  PubMed  Google Scholar 

  • Davachi L (2006) Item, context and relational episodic encoding in humans. Curr Opin Neurobiol 16:693–700

    Article  CAS  PubMed  Google Scholar 

  • Davachi L, Wagner AD (2002) Hippocampal contributions to episodic encoding: insights from relational and item-based learning. J Neurophysiol 88:982–990

    PubMed  Google Scholar 

  • deBettencourt MT, Cohen JD, Lee RF, Norman KA, Turk-Browne NB (2015) Closed-loop training of attention with real-time brain imaging. Nat Neurosci 18:47–475

    Article  CAS  Google Scholar 

  • Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci 93:13494–13499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downing PE (2000) Interactions between visual working memory and selective attention. Psychol Sci 11:467–473

    Article  CAS  PubMed  Google Scholar 

  • Dudukovic NM, Wagner AD (2007) Goal-dependent modulation of declarative memory: neural correlates of temporal recency decisions and novelty detection. Neuropsychologia 45:2608–2620

    Article  PubMed  Google Scholar 

  • Dudukovic NM, Preston AR, Archie JJ, Glover GH, Wagner AD (2010) High-resolution fMRI reveals match enhancement and attentional modulation in the human medial temporal lobe. J Cogn Neurosci 23:670–682

    Article  PubMed  Google Scholar 

  • Duncan K, Ketz N, Inati SJ, Davachi L (2012) Evidence for area CA1 as a match/mismatch detector: a high-resolution fMRI study of the human hippocampus. Hippocampus 22:389–398

    Article  PubMed  Google Scholar 

  • Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425:184–187

    Article  CAS  PubMed  Google Scholar 

  • Eldridge LL, Engel SA, Zeineh MM, Bookheimer SY, Knowlton BJ (2005) A dissociation of encoding and retrieval processes in the human hippocampus. J Neurosci 25:3280–3286

    Article  CAS  PubMed  Google Scholar 

  • Endo N, Takeda Y (2004) Selective learning of spatial configuration and object identity in visual search. Percept Psychophys 66:293–302

    Article  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  • Fenton AA, Lytton WW, Barry JM, Lenck-Santini PP, Zinyuk LE, Kubík S, Bureš J, Poucet B, Muller RU, Olypher AV (2010) Attention-like modulation of hippocampus place cell discharge. J Neurosci 30:4613–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes MA, Moscovitch M (2000) Divided attention and memory: evidence of substantial interference effects at retrieval and encoding. J Exp Psychol Gen 129:155–176

    Article  CAS  PubMed  Google Scholar 

  • Fernandes MA, Moscovitch M, Ziegler M, Grady C (2005) Brain regions associated with successful and unsuccessful retrieval of verbal episodic memory as revealed by divided attention. Neuropsychologia 43:1115–1127

    Article  PubMed  Google Scholar 

  • Fletcher PC, Stephenson CME, Carpenter TA, Donovan T, Bullmore ET (2003) Regional brain activations predicting subsequent memory success: an event-related fMRI study of the influence of encoding tasks. Cortex 39:1009–1026

    Article  PubMed  Google Scholar 

  • Gardiner JM, Parkin AJ (1990) Attention and recollective experience in recognition. Mem Cognit 18:579–583

    Article  CAS  PubMed  Google Scholar 

  • Giesbrecht B, Sy JL, Guerin SA (2013) Both memory and attention systems contribute to visual search for targets cued by implicitly learned context. Vision Res 85:80–89

    Article  PubMed  Google Scholar 

  • Gilbert CD, Li W (2013) Top-down influences on visual processing. Nat Rev Neurosci 14:350–363

    Article  CAS  PubMed  Google Scholar 

  • Goldfarb EV, Chun MM, Phelps EA (2016) Memory-guided attention: independent contributions of the hippocampus and striatum. Neuron 89:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham KS, Barense MD, Lee ACH (2010) Going beyond LTM in the MTL: a synthesis of neuropsychological and neuroimaging findings. Neuropsychologia 48:831–853

    Article  PubMed  Google Scholar 

  • Greene AJ, Gross WL, Elsinger CL, Rao SM (2007) Hippocampal differentiation without recognition: an fMRI analysis of the contextual cueing task. Learn Mem 14:548–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Guild EB, Cripps JM, Anderson ND, Al-Aidroos N (2014) Recollection can support hybrid visual memory search. Psychon Bull Rev 21:142–148

    Article  PubMed  Google Scholar 

  • Hannula DE, Ranganath C (2009) The eyes have it: hippocampal activity predicts expression of memory in eye movements. Neuron 63:592–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannula DE, Tranel D, Cohen NJ (2006) The long and short of it: relational memory impairments in amnesia, even at short lags. J Neurosci 26:8352–8359

    Article  CAS  PubMed  Google Scholar 

  • Hannula DE, Ryan JD, Tranel D, Cohen NJ (2007) Rapid onset relational memory effects are evident in eye movement behavior, but not in hippocampal amnesia. J Cogn Neurosci 19:1690–1705

    Article  PubMed  Google Scholar 

  • Hannula DE, Althoff RR, Warren DE, Riggs L, Cohen NJ, Ryan JD (2010) Worth a glance: using eye movements to investigate the cognitive neuroscience of memory. Front Hum Neurosci 4:1–16, Article 166

    Google Scholar 

  • Hardt O, Nadel L (2009) Cognitive maps and attention. In: Srinivasan N (ed) Progress in brain research, vol 176. Elsevier, The Netherlands, pp 181–194

    Google Scholar 

  • Hashimoto R, Abe N, Ueno A, Fujii T, Takahashi S, Mori E (2012) Changing the criteria for old/new recognition judgments can modulate activity in the anterior hippocampus. Hippocampus 23:141–148

    Article  Google Scholar 

  • Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henke K, Buck A, Weber B, Wieser GH (1997) Human hippocampus establishes associations in memory. Hippocampus 7:249–256

    Article  CAS  PubMed  Google Scholar 

  • Henke K, Weber B, Kneifel S, Wieser HG, Buck A (1999) Human hippocampus associates information in memory. Proc Natl Acad Sci 96:5884–5889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindy NC, Ng FY, Turk-Browne NB (2016) Linking pattern completion in the hippocampus to predictive coding in visual cortex. Nat Neurosci. doi:10.1038/nn.4284

    PubMed  PubMed Central  Google Scholar 

  • Hollingworth A (2006) Visual memory for natural scenes: evidence from change detection and visual search. Vis Cogn 14:781–807

    Article  Google Scholar 

  • Hollingworth A (2009) Two forms of scene memory guide visual search: memory for scene context and memory for the binding of target object to scene location. Vis Cogn 17:273–291

    Article  Google Scholar 

  • Huang L, Pashler H (2007) Working memory and the guidance of visual attention: consonance-driven orienting. Psychon Bull Rev 14:148–153

    Article  PubMed  Google Scholar 

  • Hulbert JC, Henson RN, Anderson MC (2016) Inducing amnesia through systemic suppression. Nat Commun 7(11003):1–9

    Google Scholar 

  • Hutchinson JB, Turk-Browne NB (2012) Memory-guided attention: control from multiple memory systems. Trends Cogn Sci 16:576–579

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchinson JB, Pak SS, Turk-Browne NB (2016) Biased competition during long-term memory formation. J Cogn Neurosci 28:187–197

    Article  PubMed  Google Scholar 

  • Iidaka T, Anderson ND, Kapur S, Cabeza R, Craik FIM (2000) The effect of divided attention on encoding and retrieval in episodic memory revealed by positron emission tomography. J Cogn Neurosci 12:267–280

    Article  CAS  PubMed  Google Scholar 

  • Jackson J, Redish AD (2007) Network dynamics of hippocampal cell-assemblies resemble multiple spatial maps within single tasks. Hippocampus 17:1209–1229

    Article  PubMed  Google Scholar 

  • Jeneson A, Mauldin KN, Hopkins RO, Squire LR (2011) The role of the hippocampus in retaining relational information across short delays: the importance of memory load. Learn Mem 18:301–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL (2008) Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol 100:129–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasper RW, Grafton ST, Eckstein MP, Giesbrecht B (2015) Multimodal neuroimaging evidence linking memory and attention systems during visual search cued by context. Ann N Y Acad Sci 1339:176–189

    Article  PubMed  Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    Article  CAS  PubMed  Google Scholar 

  • Kelemen E, Fenton AA (2010) Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol 8(e1000403):1–14

    Google Scholar 

  • Kensinger EA, Clarke RJ, Corkin S (2003) What neural correlates underlie successful encoding and retrieval? A functional magnetic resonance imaging study using a divided attention paradigm. J Neurosci 23:2407–2415

    CAS  PubMed  Google Scholar 

  • Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42:283–295

    Article  CAS  PubMed  Google Scholar 

  • Kidd, C., Piantadosi, S.T., Aslin, R.N. (2012). The Goldilocks effect: human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS One, 7, e36399. doi: 10.1371/journal.pone.0036399.

  • Kidd C, Piantadosi ST, Aslin RN (2014) The Goldilocks effect in infant auditory attention. Child Dev 85:1795–1804

    PubMed  PubMed Central  Google Scholar 

  • Kuhl BA, Rissman J, Chun MM, Wagner AD (2011) Fidelity of neural reactivation reveals competition between memories. Proc Natl Acad Sci 108:5903–5908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:420–430

    Article  CAS  PubMed  Google Scholar 

  • Leber AB, Egeth HE (2006) It’s under control: top-down search strategies can override attentional capture. Psychon Bull Rev 13:132–138

    Article  PubMed  Google Scholar 

  • Leber AB, Kawahara JI, Gabari Y (2009) Long-term abstract learning of attentional set. J Exp Psychol Hum Percept Perform 35:1385–1397

    Article  PubMed  PubMed Central  Google Scholar 

  • Libby LA, Ekstrom AD, Ragland JD, Ranganath C (2012) Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J Neurosci 32:6550–6560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  CAS  PubMed  Google Scholar 

  • Manns JR, Squire LR (2001) Perceptual learning, awareness, and the hippocampus. Hippocampus 11:776–782

    Article  CAS  PubMed  Google Scholar 

  • Maunsell JHR, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci 29:317–322

    Article  CAS  PubMed  Google Scholar 

  • Meister MLR, Buffalo EA (2016) Getting directions from the hippocampus: the neural connection between looking and memory. Neurobiol Learn Mem. doi:10.1016/j.nlm.2015.12.004

  • Monaco JD, Rao G, Roth ED, Knierim JJ (2014) Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nat Neurosci 17:725–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moores E, Laiti L, Chelazzi L (2003) Associative knowledge controls deployment of visual selective attention. Nat Neurosci 6:182–189

    Article  CAS  PubMed  Google Scholar 

  • Moray N (1959) Attention in dichotic listening: affective cues and the influence of instructions. Q J Exp Psychol 11:56–60

    Article  Google Scholar 

  • Morris CD, Bransford JD, Franks JJ (1977) Levels of processing versus transfer appropriate processing. J Verb Learn Verb Behav 16:519–533

    Article  Google Scholar 

  • Moscovitch M (2008) The hippocampus as a “stupid”, domain-specific module: implications for theories of recent and remote memory, and of imagination. Can J Exp Psychol 62:62–79

    Article  PubMed  Google Scholar 

  • Moscovitch M, Cabeza R, Winocur G, Nadel L (2016) Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu Rev Psychol 67:105–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Muzzio IA, Kentros C, Kandel E (2009a) What is remembered? Role of attention on the encoding and retrieval of hippocampal representations. J Physiol 12:2837–2854

    Article  CAS  Google Scholar 

  • Muzzio IA, Levita L, Kulkarni J, Monaco J, Kentros C, Stead M, Abbott LF, Kandel ER (2009b) Attention enhances the retrieval and stability of visuospatial and olfactory representations in the dorsal hippocampus. PLoS Biol 7(e1000140):1–20

    Google Scholar 

  • Newman EL, Gupta K, Climer JR, Monaghan CK, Hasselmo ME (2012) Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 6:1–19, Article 24

    Article  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  PubMed  Google Scholar 

  • Olsen RK, Moses SN, Riggs L, Ryan JD (2012) The hippocampus supports multiple cognitive processes through relational binding and comparison. Front Hum Neurosci 6:1–13, Article 146

    Article  Google Scholar 

  • Otten LJ, Henson RNA, Rugg MD (2001) Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons. Brain 124:399–412

    Article  CAS  PubMed  Google Scholar 

  • Parent MB, Baxter MG (2004) Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learn Mem 11:9–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Park H, Quinlan J, Thornton E, Reder LM (2004) The effect of midazolam on visual search: implications for understanding amnesia. Proc Natl Acad Sci 101:17879–17883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posner MI, Rothbart MK (2014) Attention to learning of school subjects. Trends Neurosci Educ 3:14–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Preston AR, Gabrieli JDE (2008) Dissociation between explicit memory and configural memory in the human medial temporal lobe. Cereb Cortex 18:2192–2207

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranganath C (2010) A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus 20:1263–1290

    Article  PubMed  Google Scholar 

  • Ranganath C, Blumenfeld RS (2005) Doubts about double dissociations between short- and long-term memory. Trends Cogn Sci 9:374–380

    Article  PubMed  Google Scholar 

  • Ranganath C, Ritchey M (2012) Two cortical systems for memory-guided behavior. Nat Rev Neurosci 13:713–726

    Article  CAS  PubMed  Google Scholar 

  • Rensink RA, O’Regan JK, Clark JJ (1997) To see or not to see: the need for attention to perceive changes in scenes. Psychol Sci 8:368–373

    Article  Google Scholar 

  • Rosen ML, Stern CE, Somers DC (2014) Long-term memory guidance of visuospatial attention in a change-detection paradigm. Front Psychol 5, Article 266:1–8. doi:10.3389/fpsyg.00266

    Article  Google Scholar 

  • Rosen ML, Stern CE, Michalka SW, Devaney KJ, Somers DC (2015) Cognitive control network contributions to memory-guided visual attention. Cereb Cortex. doi:10.1093/cercor/bhv028

    PubMed Central  Google Scholar 

  • Rowland DC, Kentros CG (2008) Potential anatomical basis for attentional modulation of hippocampal neurons. Ann N Y Acad Sci 1129:213–224

    Article  PubMed  Google Scholar 

  • Ryals AJ, Wang JX, Polnaszek KL, Voss JL (2015) Hippocampal contribution to implicit configuration memory expressed via eye movements during scene exploration. Hippocampus. doi:10.1002/hipo.22425

    PubMed  PubMed Central  Google Scholar 

  • Ryan JD, Althoff RR, Whitlow S, Cohen NJ (2000) Amnesia is a deficit in relational memory. Psychol Sci 11:454–461

    Article  CAS  PubMed  Google Scholar 

  • Schapiro AC, Turk-Browne NB (2015) Statistical learning. In: Toga AW (ed) Brain mapping: an encyclopedic reference. Academic Press: Elsevier, New York, NY, pp 501–506

    Chapter  Google Scholar 

  • Schapiro AC, Kustner LV, Turk-Browne NB (2012) Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr Biol 22:1622–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schapiro AC, Gregory E, Landau B, McCloskey M, Turk-Browne NB (2014) The necessity of the medial temporal lobe for statistical learning. J Cogn Neurosci 26:1736–1747

    Article  PubMed  PubMed Central  Google Scholar 

  • Schott BH, Wustenberg T, Wimber M, Fenker DB, Zierhut KC, Seidenbecher CI, Heinze HJ, Walter H, Düzel E, Richardson-Klavehn A (2013) The relationship between level of processing and hippocampal-cortical functional connectivity during episodic memory formation in humans. Hum Brain Mapp 34:407–424

    Article  PubMed  Google Scholar 

  • Seidl-Rathkopf K, Turk-Browne NB, Kastner S (2015) Automatic guidance of attention during real-world visual search. Atten Percept Psychophys 77:1881–1895

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheldon S, Moscovitch M (2012) The nature and time-course of medial temporal lobe contributions to semantic retrieval: an fMRI study on verbal fluency. Hippocampus 22:1451–1466

    Article  PubMed  Google Scholar 

  • Soto D, Humphreys GW, Rotshtein P (2007) Dissociating the neural mechanisms of memory-based guidance of visual selection. Proc Natl Acad Sci 104:17186–17191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto D, Hodsoll J, Rotshtein P, Humphreys GW (2008) Automatic guidance of attention from working memory. Trends Cogn Sci 12:342–348

    Article  PubMed  Google Scholar 

  • Soto D, Greene CM, Kiyonaga A, Rosenthal CR, Egner T (2012) A parieto-medial temporal pathway for the strategic control over working memory biases in human visual attention. J Neurosci 32:17563–17571

    Article  CAS  PubMed  Google Scholar 

  • Sprague TC, Saproo S, Serences JT (2015) Visual attention mitigates information loss in small- and large-scale neural codes. Trends Cogn Sci 19:215–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Stokes MG, Atherton K, Patai EZ, Nobre AC (2012) Long-term memory prepares neural activity for perception. Proc Natl Acad Sci 109:E360–E367

    Article  CAS  PubMed  Google Scholar 

  • Strange BA, Dolan RJ (2001) Adaptive anterior hippocampal responses to oddball stimuli. Hippocampus 11:690–698

    Article  CAS  PubMed  Google Scholar 

  • Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, Blefari ML, Bruehl AB, Cohen LG, deCharms RC, Gassert R et al (2013) Real-time fMRI neurofeedback: progress and challenges. Neuroimage 76:386–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summerfield JJ, Lepsien J, Gitelman DR, Mesulam MM, Nobre AC (2006) Orienting attention based on long-term memory experience. Neuron 49:905–916

    Article  CAS  PubMed  Google Scholar 

  • Suthana NA, Ekstrom A, Moshirvaziri S, Knowlton B, Bookheimer S (2011) Dissociations within human hippocampal subregions during encoding and retrieval of spatial information. Hippocampus 21:694–701

    Article  PubMed  Google Scholar 

  • Suthana NA, Donix M, Wozny DR, Bazih A, Jones M, Heidemann RM, Trampel R, Ekstrom AD, Scharf M, Knowlton B, Turner R, Bookheimer SY (2015) High-resolution 7-tesla fMRI of human hippocampal subfields during associative learning. J Cogn Neurosci 27:1194–1206

    Article  PubMed  Google Scholar 

  • Torralba A, Oliva A, Castelhano MS, Henderson JM (2006) Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev 113:766–786

    Article  PubMed  Google Scholar 

  • Turk-Browne NB, Jungé JA, Scholl BJ (2005) The automaticity of visual statistical learning. J Exp Psychol Gen 134:552–564

    Article  PubMed  Google Scholar 

  • Turk-Browne NB, Scholl BJ, Chun MM, Johnson MK (2009) Neural evidence of statistical learning: efficient detection of visual regularities without awareness. J Cogn Neurosci 21:1934–1945

    Article  PubMed  PubMed Central  Google Scholar 

  • Turk-Browne NB, Scholl BJ, Johnson MK, Chun MM (2010) Implicit perceptual anticipation triggered by statistical learning. J Neurosci 30:11177–11187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk-Browne NB, Golomb JD, Chun MM (2013) Complementary attentional components of successful memory encoding. Neuroimage 66:553–562

    Article  PubMed  Google Scholar 

  • Uncapher MR, Rugg MD (2005) Effects of divided attention on fMRI correlates of memory encoding. J Cogn Neurosci 17:1923–1935

    Article  PubMed  Google Scholar 

  • Uncapher MR, Rugg MD (2006) Episodic encoding is more than the sum of its parts: an fMRI investigation of multifeatural contextual encoding. Neuron 52:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uncapher MR, Rugg MD (2008) Fractionation of the component processes underlying successful episodic encoding: a combined fMRI and divided-attention study. J Cogn Neurosci 20:240–254

    Article  PubMed  Google Scholar 

  • Uncapher MR, Rugg MD (2009) Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information. J Neurosci 29:8270–8279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uncapher MR, Hutchinson JB, Wagner AD (2011) Dissociable effects of top-down and bottom-up attention during episodic encoding. J Neurosci 31:12613–12628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilberg KL, Rugg MD (2007) Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia 45:2216–2225

    Article  PubMed  PubMed Central  Google Scholar 

  • Vilberg KL, Rugg MD (2012) The neural correlates of recollection: transient versus sustained fMRI effects. J Neurosci 32:15679–15687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilberg KL, Rugg MD (2014) Temporal dissociations within the core recollection network. Cogn Neurosci 5:77–84

    Article  PubMed  Google Scholar 

  • Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342

    Article  PubMed  PubMed Central  Google Scholar 

  • Voss JL, Gonsalves BD, Federmeier KD, Tranel D, Cohen NJ (2010) Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nat Neurosci 14:115–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner AD, Schacter DL, Rotte M, Koutstaal W, Maril A, Dale AM, Rosen BR, Buckner RL (1998) Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281:1188–1191

    Article  CAS  PubMed  Google Scholar 

  • Wais PE, Gazzaley A (2011) The impact of auditory distraction on retrieval of visual memories. Psychon Bull Rev 18:1090–1097

    Article  PubMed  Google Scholar 

  • Wais PE, Rubens MT, Boccanfuso J, Gazzaley A (2010) Neural mechanisms underlying the impact of visual distraction on retrieval of long-term memory. J Neurosci 29:8541–8550

    Article  CAS  Google Scholar 

  • West Channon V, Hopfinger JB (2008) Memory’s grip on attention: the influence of item memory on the allocation of attention. Vis Cogn 16:325–340

    Article  Google Scholar 

  • Wimber M, Alink A, Charest I, Kriegeskorte N, Anderson MC (2015) Retrieval induces adaptive forgetting of competing memories via cortical pattern suppression. Nat Neurosci 18:582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe JM (2012) Saved by a log: how do humans perform hybrid visual and memory search? Psychol Sci 23:698–703

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolosin SM, Zeithamova D, Preston AR (2013) Distributed hippocampal patterns that discriminate reward context are associated with enhanced associative binding. J Exp Psychol Gen 142:1264–1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S, Hale LA, D’Esposito M, Knight RT (2004) Rapid prefrontal-hippocampal habituation to novel events. J Neurosci 24:5356–5363

    Article  CAS  PubMed  Google Scholar 

  • Yi DJ, Chun MM (2005) Attentional modulation of learning-related repetition attenuation effects in human parahippocampal cortex. J Neurosci 25:3593–3600

    Article  CAS  PubMed  Google Scholar 

  • Yonelinas AP (2002) The nature of recollection and familiarity: a review of 30 years of research. J Mem Lang 46:441–517

    Article  Google Scholar 

  • Yonelinas AP (2013) The hippocampus supports high-resolution binding the service of perception, working memory and long-term memory. Behav Brain Res 252:34–44

    Article  Google Scholar 

  • Yonelinas AP, Aly M, Wang WC, Koen JD (2010) Recollection and familiarity: examining controversial assumptions and new directions. Hippocampus 20:1178–1194

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu RQ, Zhao J (2015) The persistence of the attentional bias to regularities in a changing environment. Atten Percept Psychophys. doi:10.3758/s13414-015-0930-5

    Google Scholar 

  • Zeineh MM, Engel SA, Thompson PM, Bookehimer SY (2003) Dynamics of the hippocampus during the encoding and retrieval of face-name pairs. Science 299:577–580

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Al-Aidroos N, Turk-Browne NB (2013) Attention is spontaneously biased toward regularities. Psychol Sci 24:667–677

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Aly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aly, M., Turk-Browne, N.B. (2017). How Hippocampal Memory Shapes, and Is Shaped by, Attention. In: Hannula, D., Duff, M. (eds) The Hippocampus from Cells to Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-50406-3_12

Download citation

Publish with us

Policies and ethics