Skip to main content

Energy Trends in Adsorption at Surfaces

  • Living reference work entry
  • First Online:
  • 893 Accesses

Abstract

Adsorption is a process of vital importance in surface science and heterogeneous catalysis, with early studies dating back to the days of Irving Langmuir. Over the last decades, the advent of first-principles methods coupled with increasing computing power has enabled generation of large data sets of the energetics describing the interaction between adsorbates with different solid surfaces. This has aided in the conceptualization of energy trends through scaling relations, originally obtained by empirical means, and primarily used for the ease of computational burden in chemical transformations involving adsorption. However, the use of scaling relations has now evolved beyond its original intended purpose, with their use in identifying descriptors for reactivity and activity, as well as extension to more complex adsorbates and surfaces beyond transition metals. This chapter traces the history of scaling relations from their inception, through their extension to enable the understanding of chemical transformations and aid in the design of better catalysts, ending with the challenges and an outlook.

This is a preview of subscription content, log in via an institution.

References

  • Abild-Pedersen F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105

    Article  ADS  Google Scholar 

  • Anderson PW (1961) Localized magnetic states in metals. Phys Rev 124:41–53

    Article  ADS  MathSciNet  Google Scholar 

  • Behm RJ (1998) Spatially resolved chemistry on bimetallic surfaces. Acta Phys Pol A 93:259–272

    Article  Google Scholar 

  • Bendavid LI, Carter EA (2013) First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces. J Phys Chem B 117:15750–15760

    Article  Google Scholar 

  • Bengone O, Alouani M, Blöchl P, Hugel J (2000) Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO. Phys Rev B 62:16392–16401

    Article  ADS  Google Scholar 

  • Berland K et al (2015) van der Waals forces in density functional theory: a review of the vdW-DF method. Rep Prog Phys 78:066501

    Article  ADS  Google Scholar 

  • Bligaard T et al (2004) The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224:206–217

    Article  Google Scholar 

  • Bockris JO, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites.J Electrochem Soc 131:290–302

    Article  Google Scholar 

  • Bollinger MV, Jacobsen KW, Nørskov JK (2003) Atomic and electronic structure of MoS2 nanoparticles. Phys Rev B 67:085410

    Article  ADS  Google Scholar 

  • Brogaard RY, Moses PG, Nørskov JK (2012) Modeling van der Waals interactions in zeolites with periodic DFT: physisorption of n-alkanes in ZSM-22. Catal Lett 142:1057–1060

    Article  Google Scholar 

  • Brønsted JN (1928) Acid and basic catalysis. Chem Rev 5:231–338

    Article  Google Scholar 

  • Bryndza HE, Fong LK, Paciello RA, Tam W, Bercaw JE (1987) Relative metal-hydrogen, -oxygen, -nitrogen, and -carbon bond strengths for organoruthenium and organoplatinum compounds; equilibrium studies of Cp*(PMe3)2RuX and (DPPE)MePtX systems. J Am Chem Soc 109:1444–1456

    Article  Google Scholar 

  • Bukowski BC, Greeley J (2016) Scaling relationships for molecular adsorption and dissociation in Lewis acid zeolites. J Phys Chem C 120:6714–6722

    Article  Google Scholar 

  • Calle-Vallejo F, Martínez JI, García-Lastra JM, Rossmeisl J, Koper MTM (2012) Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. Phys Rev Lett 108:116103

    Article  ADS  Google Scholar 

  • Calle-Vallejo F et al (2013) Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem Sci 4:1245–1249

    Article  Google Scholar 

  • Calle-Vallejo F, Martínez JI, García-Lastra JM, Sautet P, Loffreda D (2014) Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew Chem Int Ed 53:8316–8319

    Article  Google Scholar 

  • Calle-Vallejo F, Loffreda D, Koper MTM, Sautet P (2015a) Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nat Chem 7:403–410

    Article  Google Scholar 

  • Calle-Vallejo F et al (2015b) Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350:185–189

    Article  ADS  Google Scholar 

  • Che M (2013) Nobel prize in chemistry 1912 to Sabatier: organic chemistry or catalysis? Catal Today 218–219:162–171

    Article  Google Scholar 

  • Cheng J, Hu P (2008) Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis. J Am Chem Soc 130:10868–10869

    Article  Google Scholar 

  • Christensen CH, Nørskov JK (2008) A molecular view of heterogeneous catalysis. J Chem Phys 128:182503

    Article  ADS  Google Scholar 

  • Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401

    Article  ADS  Google Scholar 

  • Doyle AD, Montoya JH, Vojvodic A (2015) Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 7:738–742

    Article  Google Scholar 

  • Doyle AD, Bajdich M, Vojvodic A (2017) Theoretical insights to bulk activity towards oxygen evolution in oxyhydroxides. Catal Lett 147:1533–1539

    Article  Google Scholar 

  • Ertl G (1980) Surface science and catalysis – studies on the mechanism of ammonia synthesis: the P. H. Emmett award address. Catal Rev Sci Eng 21:201–223

    Article  Google Scholar 

  • Evans MG, Polanyi M (1938) Inertia and driving force of chemical reactions. Trans Faraday Soc 34:11–24

    Article  Google Scholar 

  • Fernández EM et al (2008) Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed 47:4683–4686

    Article  Google Scholar 

  • Ferrin P et al (2009) Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted−Evans−Polanyi relations. J Am Chem Soc 131:5809–5815

    Article  Google Scholar 

  • Gajdoš M, Eichler A, Hafner J (2004) CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations. J Phys Condens Matter 16:1141

    Article  ADS  Google Scholar 

  • García-Mota M, Vojvodic A, Abild-Pedersen F, Nørskov JK (2013) Electronic origin of the surface reactivity of transition-metal-doped TiO2(110). J Phys Chem C 117:460–465

    Article  Google Scholar 

  • Göltl F, Müller P, Uchupalanun P, Sautet P, Hermans I (2017) Developing a descriptor-based approach for CO and NO adsorption strength to transition metal sites in zeolites. Chem Mater 29:6434–6444

    Article  Google Scholar 

  • Greeley J (2016) Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng 7:605–635

    Article  Google Scholar 

  • Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3:810–815

    Article  ADS  Google Scholar 

  • Greeley J et al (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556

    Article  Google Scholar 

  • Grimley TB (1967a) The indirect interaction between atoms or molecules adsorbed on metals. Proc Phys Soc 90:751–764

    Article  ADS  Google Scholar 

  • Grimley TB (1967b) The electron density in a metal near a chemisorbed atom or molecule. Proc Phys Soc 92:776

    Article  ADS  Google Scholar 

  • Grimley TB (1971) Electronic structure of adsorbed atoms and molecules. J Vac Sci Technol 8:31–38

    Article  ADS  Google Scholar 

  • Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    Article  Google Scholar 

  • Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  Google Scholar 

  • Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org Biomol Chem 5:741–758

    Article  Google Scholar 

  • Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  ADS  Google Scholar 

  • Groß A (2008) Adsorption at nanostructured surfaces from first principles. J Comput Theor Nanosci 5:894–922

    Article  Google Scholar 

  • Halck NB, Petrykin V, Krtil P, Rossmeisl J (2014) Beyond the volcano limitations in electrocatalysis – oxygen evolution reaction. Phys Chem Chem Phys 16:13682–13688

    Article  Google Scholar 

  • Hammer B (2006) Special sites at noble and late transition metal catalysts. Top Catal 37:3–16

    Article  Google Scholar 

  • Hammer B, Norskov JK (1995a) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220

    Article  ADS  Google Scholar 

  • Hammer B, Norskov JK (1995b) Why gold is the noblest of all the metals. Nature 376:238–240

    Article  ADS  Google Scholar 

  • Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis – calculations and concepts. Adv Catal 45:71–129, . Academic Press

    Google Scholar 

  • Hansen HA, Rossmeisl J, Nørskov JK (2008) Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys 10:3722–3730

    Article  Google Scholar 

  • Hansen N, Kerber T, Sauer J, Bell AT, Keil FJ (2010) Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2: DFT study. J Am Chem Soc 132:11525–11538

    Article  Google Scholar 

  • Hansen HA, Varley JB, Peterson AA, Nørskov JK (2013) Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J Phys Chem Lett 4:388–392

    Article  Google Scholar 

  • Holby EF, Sheng W, Shao-Horn Y, Morgan D (2009) Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen. Energy Environ Sci 2:865–871

    Article  Google Scholar 

  • Hong WT et al (2015) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8:1404–1427

    Article  Google Scholar 

  • Hong X, Chan K, Tsai C, Nørskov JK (2016) How doped MoS 2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal 6:4428–4437

    Article  Google Scholar 

  • Inderwildi OR, Jenkins SJ, King DA (2007) When adding an unreactive metal enhances catalytic activity: NOx decomposition over silver–rhodium bimetallic surfaces. Surf Sci 601:L103–L108

    Article  ADS  Google Scholar 

  • Inoğlu N, Kitchin JR (2009) Atomistic thermodynamics study of the adsorption and the effects of water–gas shift reactants on Cu catalysts under reaction conditions. J Catal 261:188–194

    Article  Google Scholar 

  • Jiang T et al (2009) Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces. J Phys Chem C 113:10548–10553

    Article  Google Scholar 

  • Jones G, Bligaard T, Abild-Pedersen F, Nørskov JK (2008) Using scaling relations to understand trends in the catalytic activity of transition metals. J Phys Condens Matter 20:064239

    Article  ADS  Google Scholar 

  • Jones G, Studt F, Abild-Pedersen F, Nørskov JK, Bligaard T (2011) Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces. Chem Eng Sci 66:6318–6323

    Article  Google Scholar 

  • Kibler LA, El-Aziz AM, Hoyer R, Kolb DM (2005) Tuning reaction rates by lateral strain in a palladium monolayer. Angew Chem Int Ed 44:2080–2084

    Article  Google Scholar 

  • Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys 120:10240–10246

    Article  ADS  Google Scholar 

  • Koper MTM (2013) Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem Sci 4:2710–2723

    Article  Google Scholar 

  • Langmuir I (1961) In: Suits CG (ed) The collected works of Irving Langmuir. Pergamon Press Ltd, New York

    Google Scholar 

  • Lee K, Murray ÉD, Kong L, Lundqvist BI, Langreth DC (2010) Higher-accuracy van der Waals density functional. Phys Rev B 82:081101

    Article  ADS  Google Scholar 

  • Lee Y-L et al (2016) Kinetics of oxygen surface exchange on epitaxial Ruddlesden–Popper phases and correlations to first-principles descriptors. J Phys Chem Lett 7:244–249

    Article  ADS  Google Scholar 

  • Liu B, Greeley J (2013) A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces. Phys Chem Chem Phys 15:6475–6485

    Article  Google Scholar 

  • Liu Z-P, Hu P (2001a) General trends in the barriers of catalytic reactions on transition metal surfaces. J Chem Phys 115:4977–4980

    Article  ADS  Google Scholar 

  • Liu Z-P, Hu P (2001b) General trends in CO dissociation on transition metal surfaces. J Chem Phys 114:8244–8247

    Article  ADS  Google Scholar 

  • Liu Z-P, Jenkins SJ, King DA (2004) Car exhaust catalysis from first principles: selective NO reduction under excess O2 conditions on Ir. J Am Chem Soc 126:10746–10756

    Article  Google Scholar 

  • Liu B, Zhou M, Chan MKY, Greeley JP (2015) Understanding polyol decomposition on bimetallic Pt–Mo catalysts – a DFT study of glycerol. ACS Catal 5:4942–4950

    Article  Google Scholar 

  • Liu C, Tranca I, van Santen RA, Hensen EJM, Pidko EA (2017) Scaling relations for acidity and reactivity of zeolites. J Phys Chem C 121:23520–23530

    Article  Google Scholar 

  • Logadottir A et al (2001) The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J Catal 197:229–231

    Article  Google Scholar 

  • Londero E et al (2012) Desorption of n-alkanes from graphene: a van der Waals density functional study. J Phys Condens Matter 24:424212

    Article  Google Scholar 

  • Ma X, Xin H (2017) Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts. Phys Rev Lett 118:036101

    Article  ADS  Google Scholar 

  • Man IC et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165

    Article  Google Scholar 

  • Marković NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229

    Article  ADS  Google Scholar 

  • Medford AJ et al (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42

    Article  Google Scholar 

  • Menning CA, Chen JG (2009) General trend for adsorbate-induced segregation of subsurface metal atoms in bimetallic surfaces. J Chem Phys 130:174709

    Article  ADS  Google Scholar 

  • Michaelides A et al (2003) Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J Am Chem Soc 125:3704–3705

    Article  Google Scholar 

  • Mills G, Gordon MS, Metiu H (2003) Oxygen adsorption on Au clusters and a rough Au(111) surface: the role of surface flatness, electron confinement, excess electrons, and band gap. J Chem Phys 118:4198–4205

    Article  ADS  Google Scholar 

  • Montemore MM, Medlin JW (2014) Scaling relations between adsorption energies for computational screening and design of catalysts. Cat Sci Technol 4:3748–3761

    Article  Google Scholar 

  • Montoya JH, Tsai C, Vojvodic A, Nørskov JK (2015) The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8:2180–2186

    Article  Google Scholar 

  • Montoya JH, Doyle AD, Nørskov JK, Vojvodic A (2018) Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO3 oxides. Phys Chem Chem Phys 20:3813–3818

    Article  Google Scholar 

  • Mun BS et al (2005) A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. J Chem Phys 123:204717

    Article  ADS  Google Scholar 

  • Newns DM (1969) Self-consistent model of hydrogen chemisorption. Phys Rev 178:1123–1135

    Article  ADS  Google Scholar 

  • Nikolla E, Schwank J, Linic S (2009) Measuring and relating the electronic structures of nonmodel supported catalytic materials to their performance. J Am Chem Soc 131:2747–2754

    Article  Google Scholar 

  • Nørskov JK et al (2002) Universality in heterogeneous catalysis. J Catal 209:275–278

    Article  Google Scholar 

  • Nørskov JK et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  • Nørskov JK, Scheffler M, Toulhoat H (2006) Density functional theory in surface science and heterogeneous catalysis. MRS Bull 31:669–674

    Article  Google Scholar 

  • Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  Google Scholar 

  • Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci U S A 108:937–943

    Article  ADS  Google Scholar 

  • Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T (2014) Fundamental concepts in heterogeneous catalysis, John Wiley & Sons, Hoboken, NJ, USA

    Google Scholar 

  • Peterson AA, Nørskov JK (2012) Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 3:251–258

    Article  Google Scholar 

  • Plessow PN, Abild-Pedersen F (2015) Examining the linearity of transition state scaling relations. J Phys Chem C 119:10448–10453

    Article  Google Scholar 

  • Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys Rev B 65:035406

    Article  ADS  Google Scholar 

  • Reuter K, Scheffler M (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys Rev Lett 90:046103

    Article  ADS  Google Scholar 

  • Reuter K, Frenkel D, Scheffler M (2004) The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. Phys Rev Lett 93:116105

    Article  ADS  Google Scholar 

  • Roling LT, Abild-Pedersen F (2017) Structure-sensitive scaling relations: adsorption energies from surface site stability. ChemCatChem 10:1643–1650

    Article  Google Scholar 

  • Román-Pérez G, Soler JM (2009) Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett 103:096102

    Article  ADS  Google Scholar 

  • Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319:178–184

    Article  Google Scholar 

  • Rossmeisl J, Nørskov JK, Taylor CD, Janik MJ, Neurock M (2006) Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J Phys Chem B 110:21833–21839

    Article  Google Scholar 

  • Roudgar A, Groß A (2003) Local reactivity of thin Pd overlayers on Au single crystals. J Electroanal Chem 548:121–130

    Article  Google Scholar 

  • Sabatier P (1913) (1854–1941) A. du texte. La catalyse en chimie organique, par Paul Sabatier, C. Béranger

    Google Scholar 

  • Salciccioli M, Chen Y, Vlachos DG (2010) Density functional theory-derived group additivity and linear scaling methods for prediction of oxygenate stability on metal catalysts: adsorption of open-ring alcohol and polyol dehydrogenation intermediates on Pt-based metals. J Phys Chem C 114:20155–20166

    Article  Google Scholar 

  • Schlögl R (2003) Catalytic synthesis of ammonia – a “never-ending story”? Angew Chem Int Ed 42:2004–2008

    Article  Google Scholar 

  • Schnur S, Groß A (2010) Strain and coordination effects in the adsorption properties of early transition metals: a density-functional theory study. Phys Rev B 81:033402

    Article  ADS  Google Scholar 

  • Schock LE, Marks TJ (1988) Organometallic thermochemistry. Metal hydrocarbyl, hydride, halide, carbonyl, amide, and alkoxide bond enthalpy relationships and their implications in pentamethylcyclopentadienyl and cyclopentadienyl complexes of zirconium and hafnium. J Am Chem Soc 110:7701–7715

    Article  Google Scholar 

  • Seh ZW et al (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:eaad4998

    Article  Google Scholar 

  • Shustorovich E (1986) Bond making and breaking on transition-metal surfaces: theoretical projections based on bond-order conservation. Surf Sci 176:L863–L872

    Article  ADS  Google Scholar 

  • Shustorovich E, Bell AT (1988) Analysis of CO hydrogenation pathways using the bond-order-conservation method. J Catal 113:341–352

    Article  Google Scholar 

  • Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn YA (2011) Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  ADS  Google Scholar 

  • Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers. J Am Chem Soc 131:816–825

    Article  Google Scholar 

  • Tait SL, Dohnálek Z, Campbell CT, Kay BD (2006) n-alkanes on Pt(111) and on C(0001)∕Pt(111): chain length dependence of kinetic desorption parameters. J Chem Phys 125:234308

    Article  ADS  Google Scholar 

  • Tripa CE, Zubkov TS, Yates JT, Mavrikakis M, Nørskov JK (1999) Molecular N2 chemisorption – specific adsorption on step defect sites on Pt surfaces. J Chem Phys 111:8651–8658

    Article  ADS  Google Scholar 

  • Tuma C, Sauer J (2006) Treating dispersion effects in extended systems by hybrid MP2: DFT calculations – protonation of isobutene in zeolite ferrierite. Phys Chem Chem Phys 8:3955–3965

    Article  Google Scholar 

  • van Santen RA (2010) On Shustorovich’s bond-order conservation method as applied to chemisorption. Recueil Trav Chim Paysâ-Bas 109:59–63

    Article  Google Scholar 

  • Viñes F, Vojvodic A, Abild-Pedersen F, Illas F (2013) Brønsted–Evans–Polanyi relationship for transition metal carbide and transition metal oxide surfaces. J Phys Chem C 117:4168–4171

    Article  Google Scholar 

  • Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK (2012) Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal 2:1654–1660

    Article  Google Scholar 

  • Vojvodic A, Nørskov JK (2011) Optimizing perovskites for the water-splitting reaction. Science 334:1355–1356

    Article  ADS  Google Scholar 

  • Vojvodic A, Nørskov JK (2015) New design paradigm for heterogeneous catalysts. Natl Sci Rev 2:140–149

    Article  Google Scholar 

  • Vojvodic A, Hellman A, Ruberto C, Lundqvist BI (2009) From electronic structure to catalytic activity: a single descriptor for adsorption and reactivity on transition-metal carbides. Phys Rev Lett 103:146103

    Article  ADS  Google Scholar 

  • Vojvodic A et al (2011) On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. J Chem Phys 134:244509

    Article  ADS  Google Scholar 

  • Vojvodic A, Nørskov JK, Abild-Pedersen F (2014a) Electronic structure effects in transition metal surface chemistry. Top Catal 57:25–32

    Article  Google Scholar 

  • Vojvodic A et al (2014b) Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem Phys Lett 598:108–112

    Article  ADS  Google Scholar 

  • Wang Y et al (2016) Scaling relationships for binding energies of transition metal complexes. Catal Lett 146:304–308

    Article  Google Scholar 

  • Wang S, Omidvar N, Marx E, Xin H (2018) Coordination numbers for unraveling intrinsic size effects in gold-catalyzed CO oxidation. Phys Chem Chem Phys 20:6055–6059

    Article  Google Scholar 

  • Wellendorff J et al (2012) Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys Rev B 85:235149

    Article  ADS  Google Scholar 

  • Wodrich MD, Busch M, Corminboeuf C (2016) Accessing and predicting the kinetic profiles of homogeneous catalysts from volcano plots. Chem Sci 7:5723–5735

    Article  Google Scholar 

  • Xin H, Vojvodic A, Voss J, Nørskov JK, Abild-Pedersen F (2014) Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys Rev B 89:115114

    Article  ADS  Google Scholar 

  • Xu Y (2009) Recent advances in heterogeneous catalysis enabled by first-principles methods. In: Spivey JJ, Dooley KM (eds) Catalysis. R Soc Chem Lond 21:131–153

    Google Scholar 

  • Zhang J et al (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127:12480–12481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Vojvodic .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Raman, A.S., Vojvodic, A. (2018). Energy Trends in Adsorption at Surfaces. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics