Skip to main content

Phase-Field Modeling of Microstructure Evolution in Nuclear Materials

  • Living reference work entry
  • First Online:

Abstract

Irradiation is a unique driver for microstructure evolution in nuclear materials. It produces high concentrations of point defects and extended defects that trigger the formation of microstructural features such as voids, bubbles, precipitates and dislocations agglomerates. The evolution of such features significantly impacts the properties of materials, thus requiring careful modeling. The phase-field method has demonstrated its capability of simulating microstructure evolution in nuclear materials. Although the method does not yield as of yet quantitative results in various aspects of microstructure evolution, the community is working with the premise that the method will be a standard predictive tool in the future. The objective of this chapter is thus to present a concise summary of the status of development of the phase field approach for nuclear materials applications, with a special focus on the quantitative results obtained by following this approach. The strengths and limitations of the application of phase-field modeling of microstructure evolution in nuclear materials are discussed, and a summary of possible future research directions is presented.

This is a preview of subscription content, log in via an institution.

References

  • Aagesen LK, Schwen D, Ahmed K, Tonks M (2017) Quantifying elastic energy effects on interfacial energy in the Kim-Kim-Suzuki phase-field model with different interpolation schemes. Comput Mater Sci 140:10

    Article  Google Scholar 

  • Ahmed K (2011) Phase field modeling of microstructure evolution in thermal barrier coating systems. MSc, Florida State University, Florida, USA

    Google Scholar 

  • Ahmed K (2015) Phase field modeling of grain growth in porous polycrystalline solids. PhD, Purdue University, Indiana, USA

    Google Scholar 

  • Ahmed K, El-Azab A (2018) An analysis of two classes of phase field models for void growth and coarsening in irradiated crystalline solids. Mater Theory 2:1

    Article  Google Scholar 

  • Ahmed K, Yablinsky C, Schulte A, Allen T, El-Azab A (2013) Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics. Model Simul Mat Sci Eng 21:065005

    Article  ADS  Google Scholar 

  • Ahmed K, Pakarinen J, Allen T, El-Azab A (2014) Phase field simulation of grain growth in porous uranium dioxide. J Nucl Mater 446:90

    Article  ADS  Google Scholar 

  • Ahmed K, Allen T, El-Azab A (2016a) Phase field modeling for grain growth in porous solids. J Mater Sci 51:1261

    Article  ADS  Google Scholar 

  • Ahmed K, Bai X, Zhang Y, and Biner B (2016b) High-Burnup-Structure (HBS): model development in MARMOT for HBS formation and stability under radiation and high temperature. Technical Report, Idaho National Laboratory (INL), Idaho Falls, ID, USA

    Google Scholar 

  • Ahmed K, Tonks M, Zhang Y, Biner B, El-Azab A (2017) Particle-grain boundary interactions: a phase field study. Comput Mater Sci 134:25

    Article  Google Scholar 

  • Allen SM, Cahn JW (1979) Acta Metall 27:1085

    Article  Google Scholar 

  • Badillo A, Bellon P, Averback RS (2015) A phase field model for segregation and precipitation induced by irradiation in alloys. Model Simul Mater Sci Eng 23:035008

    Article  ADS  Google Scholar 

  • Bair J, Zaeem MA, Schwen D (2017) Acta Mater 123:235

    Article  Google Scholar 

  • Bi Z, Sekerka R (1998) Physica A 261:95

    Article  ADS  Google Scholar 

  • Biner B (2017) Programming phase-field modeling. Springer, Cham

    Book  Google Scholar 

  • Biner SB, Rao WF, Zhang YF (2016) The stability of precepitates and the role of lattice defects in Fe-1at% Cu-1at%Ni-1at%Mn alloy: a phase-field model study. J Nucl Mater 468:9

    Article  ADS  Google Scholar 

  • Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Ann Rev Mater Res 23163

    Google Scholar 

  • Bourgeois L, Dehaudt P, Lemaignan C, Fredric JP (2001) J Nucl Mater 295:73

    Article  ADS  Google Scholar 

  • Brailsford A, Bullough R (1972) J Nucl Mater 44:121

    Article  ADS  Google Scholar 

  • Brook RJ (1969) J Am Ceram Soc 52:56

    Article  Google Scholar 

  • Cahn JW (1961) Acta Metall 9:795

    Article  Google Scholar 

  • Cahn JW, Hilliard JEJ (1958) Chem Phys 28:258

    ADS  Google Scholar 

  • Carpay FM (1977) J Am Ceram Soc 60:82

    Article  Google Scholar 

  • Carpenter GJC (1973) J Nucl Mater 48:264

    Article  ADS  Google Scholar 

  • Chakraborty P, Zhang Y, Tonks MR (2016) Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method. Comput Mater Sci 113:38

    Article  Google Scholar 

  • Chang K, Lee GG, Kwon J (2016) A phase-field modeling of void swelling in the austenitic stainless steel. Radiat Eff Def Solids 171:242–251

    Article  ADS  Google Scholar 

  • Chen LQ (2002) Ann Rev Mater Res 32:113

    Article  Google Scholar 

  • CHiMaD (2017) http://chimad.northwestern.edu/. Accessed 15 Oct 2017

  • Chockalingam K, Millett PC, Tonks MR (2012) Effects of intergranular gas bubbles on thermal conductivity. J Nucl Mater 430:166–170

    Article  ADS  Google Scholar 

  • COMSOL (2017) https://www.comsol.com/. Accessed 15 Oct 2017

  • De Groot S, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland Publishing Company, Amsterdam

    MATH  Google Scholar 

  • El-Azab A, Ahmed K, Rokkam S, Hochrainer T (2014) Diffuse interface modeling of void growth in irradiated materials. Mathematical, thermodynamic and atomistic perspectives. Curr Opinion Solid State Mat Sci 18:90

    Article  ADS  Google Scholar 

  • Elder K, Grant M, Provatas N, Kosterlitz JM (2001) Phys Rev E 64:021604

    Article  ADS  Google Scholar 

  • Emmerich H (2008) Adv Phys 57:1

    Article  ADS  Google Scholar 

  • FEniCS (2017) https://fenicsproject.org/. Accessed 15 Oct 2017

  • Fife PC (1992) Dynamics of internal layers and diffuse interfaces. SIAM, Philadelphia

    Google Scholar 

  • FiPy (2017) https://www.ctcms.nist.gov/fipy/. Accessed 15 Oct 2017

  • Gaston D, Newman C, Hansen G, Lebrun-Grandie D (2009) Nucl Eng Des 239:1768

    Article  Google Scholar 

  • Gaston et al (2015) Physics-based multiscale coupling for full core nuclear reactor simulation. Ann Nucl Energy 84:45

    Article  Google Scholar 

  • Ginzburg V, Landau L (1950) Sov Phys JETP 20:1064

    Google Scholar 

  • Glauber RJ (1963) J Math Phys 4:294

    Article  ADS  MathSciNet  Google Scholar 

  • Guo XH, Shi SQ, Zhang QM, Ma XQ (2008a) An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part I: smooth specimen. J Nucl Mater 378:110–119

    Article  ADS  Google Scholar 

  • Guo XH, Shi SQ, Zhang QM, Ma XQ (2008b) An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part II: specimen with flaws. J Nucl Mater 378:120–125

    Article  ADS  Google Scholar 

  • Hochrainer T, El-Azab A (2015) Phil Mag 95:948

    Article  ADS  Google Scholar 

  • Hohenberg PC, Halperin BI (1977) Rev Mod Phys 49:435

    Article  ADS  Google Scholar 

  • Hsueh CH, Evans AG, Coble RL (1982) Acta Metall 30:1269

    Article  Google Scholar 

  • Hu S, Henager H (2009) J Nucl Mater 394:155

    Article  ADS  Google Scholar 

  • Hu S, Henager H (2010) Acta Mater 58:3230

    Article  Google Scholar 

  • Hu S, Henager C, Heinisch H, Stan M, Baskes M, Valone S (2009) J Nucl Mater 392:292

    Article  ADS  Google Scholar 

  • Hu S et al (2012) Evolution kinetics of interstitial loops in irradiated materials: a phase-field model. Model Simul Mater Sci Eng 20:015011

    Article  ADS  Google Scholar 

  • Hu S et al (2016a) Formation mechanism of gas bubble superlattice in UMo metal fuels: phase-field modeling investigation. J Nucl Mater 479:202–215

    Article  ADS  Google Scholar 

  • Hu SY, Burkes D, Lavender CA, Joshi V (2016b) Effect of grain morphology on gas bubble swelling in UMo fuels—a 3D microstructure dependent booth model. J Nucl Mater 480:323

    Article  ADS  Google Scholar 

  • Jokisaari A, Vorhees P, Guyer J, Warren J, Heinonen O (2017) Comput Mater Sci 126:139–151

    Article  Google Scholar 

  • Kawasaki K (1966) Phys Rev 145:224

    Article  ADS  MathSciNet  Google Scholar 

  • Kim SG, Kim WT, Suzuki T (1999) Phase-field model for binary alloys. Phys Rev E 60:7186

    Article  ADS  Google Scholar 

  • Li Y, Hu S, Sun X, Gao F, Henager H, Khaleel M (2010) J Nucl Mater 407:119

    Article  ADS  Google Scholar 

  • Li Y et al (2012) Computer simulations of interstitial loop growth kinetics in irradiated bcc Fe. J Nucl Mater 427:259–267

    Article  ADS  Google Scholar 

  • Li Y, Hu S, Montgomer R, Gao F, Sun X (2013) Nucl Instr Meth Res B 303:62

    Article  ADS  Google Scholar 

  • Li Y, Hu S, Zhang L, Sun X (2014) Non-classical nuclei and growth kinetics of Cr precipitates in FeCr alloys during aging. Modelling Simul. Mater. Sci. Eng. 22:025002

    Article  ADS  Google Scholar 

  • Liang L et al (2016) Mesoscale model for fission-induced recrystallization in U-7Mo alloy. Comput Mater Sci 124:228–237

    Article  Google Scholar 

  • LibMesh (2017) http://libmesh.github.io/. Accessed 15 Oct 2017

  • Ma XQ, Shi SQ, Woo CH, Chen LQ (2002a) Phase-field simulation of hydride precipitation in bi-crystalline zirconium. Scr Mater 47:237–241

    Article  Google Scholar 

  • Ma XQ, Shi SQ, Woo CH, Chen LQ (2002b) Effect of applied load on nucleation and growth of gamma-hydrides in zirconium. Comput Mater Sci 23:283–290

    Article  Google Scholar 

  • Ma XQ, Shi SQ, Woo CH, Chen LQ (2006) The phase field model for hydrogen diffusion and gamma-hydride precipitation in zirconium under non-uniformly applied stress. Mech Mater 38:3

    Article  ADS  Google Scholar 

  • Mei ZG et al (2016) Grain growth in U-7Mo alloy: a combined first-principles and phase field study. J Nucl Mater 473:300–308

    Article  ADS  Google Scholar 

  • MICRESS (2017) http://web.micress.de/. Accessed 15 Oct 2017

  • Millet P, Tonks M (2011) Curr Opin Solid State Mater Sci 15:125

    Article  ADS  Google Scholar 

  • Millett P, Rokkam S, El-Azab A, Tonks M, Wolf D (2009) Mod Sim Mater Sci Eng 17:064003

    Article  ADS  Google Scholar 

  • Millett P, El-Azab A, Rokkam S, Tonks M, Wolf D (2011a) Comput Mater Sci 50:949

    Article  Google Scholar 

  • Millett P, El-Azab A, Wolf D (2011b) Comput Mater Sci 50:960

    Article  Google Scholar 

  • Millett PC et al (2012) Phase-field simulation of intergranular bubble growth and percolation in bicrystals. J Nucl Mater 425:130–135

    Article  ADS  Google Scholar 

  • Moelans N (2011) A quantitative and thermodynamically consistent phase- field interpolation function for multi-phase systems. Acta Mater 59(3):1077

    Article  Google Scholar 

  • Moelans N, Blanpain B, Wollants P (2008) Calphad 32:268

    Article  Google Scholar 

  • MOOSE (2017 http://mooseframework.org/. Accessed 15 Oct 2017

  • NEAMS (2017) https://neams.inl.gov/. Accessed 15 Oct 2017

  • Nichols FA (1968) J Am Ceram Soc 51:468

    Article  Google Scholar 

  • Olander D (1976) Fundamental aspects of nuclear reactor fuel element. Technical Information Service, Springfield

    Google Scholar 

  • Olander D, Motta A (2017) Light water reactor materials volume I: fundamentals. American Nuclear Society, LaGrange Park

    Google Scholar 

  • OpenPhase (2017) http://www.openphase.de/. Accessed 15 Oct 2017

  • Pego RL (1989) Proc Roy Soc London Ser A 422:261

    Article  ADS  MathSciNet  Google Scholar 

  • PETSc (2017) http://www.mcs.anl.gov/petsc/. Accessed 15 Oct 2017

  • PF Hub (2017) https://pages.nist.gov/chimad-phase-field/. Accessed 15 Oct 2017

  • Plapp M (2011) Unified derivation of phase-field models for alloy solidification from a grand-potential functional. Phys Rev E 84:031601

    Article  ADS  Google Scholar 

  • PRISMS (2017) http://www.prisms-center.org/. Accessed 15 Oct 2017

  • Provatas N, Elder K (2010) Phase-field methods in materials science and engineering. Wiley, Weinheim

    Book  Google Scholar 

  • Rahaman MN (2003) Ceramic processing and sintering. Marcel Dekker, New York

    Google Scholar 

  • Riedel H, Svoboda J (1993) Acta Metall Mater 41:1929

    Article  Google Scholar 

  • Rokkam S, El-Azab A, Millett P, Wolf D (2009) Mod Sim Mater Sci Eng 17:064002

    Article  ADS  Google Scholar 

  • Rouchette H, Thuinet L, Legris A, Ambard A, Domain C (2014) Quantitative phase field model for dislocation sink strength calculations. Comput Mater Sci 88:50–60

    Article  Google Scholar 

  • Rowlinson JS (1979) J Stat Phys 20:197

    Article  ADS  Google Scholar 

  • Russell K (1971) Acta Metall 19:753

    Article  Google Scholar 

  • Schwen D, Aagesen LK, Peterson JW, Tonks M (2017) Comput Mater Sci 132:36–45

    Article  Google Scholar 

  • Semenov A, Woo C (2012) Acta Mater 60:6112

    Article  Google Scholar 

  • Short MP, Yip S (2015) Materials aging at the mesoscale: kinetics of thermal, stress, radiation activations. Curr Opin Solid State Mater Sci 19:245–252

    Article  ADS  Google Scholar 

  • Spears MA, Evans AG (1982) Acta Metall 30:1281

    Article  Google Scholar 

  • Steinbach I (2009) Model Simul Mater Sci Eng 17:073001

    Article  ADS  Google Scholar 

  • Svoboda J, Riedel H (1992) Acta Metall Mater 40:2829

    Article  Google Scholar 

  • Tonks M, Gaston D, Millett P, Andrs D, Talbot P (2012) Comput Mater Sci 51:20

    Article  Google Scholar 

  • Tonks MR, Zhang Y, Bai X, Millett PC (2014) Demonstrating the temperature gradient impact on grain growth in UO2 using the phase field method. Mater Res Lett 2:23

    Article  Google Scholar 

  • Turnbull JA (1974) J Nucl Mater 50:62

    Article  ADS  Google Scholar 

  • Was G (2017) Fundamentals of radiation materials science-metals and alloys. Springer, Berlin

    Book  Google Scholar 

  • Wheeler AA, Boettinger WJ, McFadden GB (1992) Phase-field model for iso- thermal phase-transitions in binary-alloys. Phys Rev A 45:7424–7439

    Article  ADS  Google Scholar 

  • Williamson RL, Hales JD, Novascone SR, Tonks MR, Gaston DR, Permann CJ, Andrs D, Martineau RC (2012) Multidimensional multiphysics simulation of nuclear fuel behavior. J Nucl Mater 423:149–163

    Article  ADS  Google Scholar 

  • Xiao Z, Semenov A, Woo C, Shi SQ (2013) J Nucl Mater 439:25

    Article  ADS  Google Scholar 

  • Yu H, Lu W (2005) Acta Mater 53:1799

    Article  Google Scholar 

  • Zhang L et al (2012) Phase-field modeling of temperature gradient driven pore migration coupling with thermal conduction. Comput Mater Sci 56:161–165

    Article  Google Scholar 

  • Zhang L, Tonks M, Gaston D, Peterson J, Andrs D, Millett P, Biner B (2013) J Comp Phys 236:74

    Article  ADS  Google Scholar 

Download references

Acknowledgments

K. Ahmed would like to acknowledge the support from a faculty development grant from the Nuclear Regulatory Commission (NRC-HQ-84-16-G-0009). A. El-Azab acknowledges financial support from NSF-CMMI-Mechanics of Materials Program under contract number 1728419. This material is also based partially upon work supported as part of the Center for Materials Science of Nuclear Fuel, an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences under award number FWP 1356, through subcontract number 00122223 at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Ahmed .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahmed, K., El-Azab, A. (2018). Phase-Field Modeling of Microstructure Evolution in Nuclear Materials. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_133-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_133-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics