Skip to main content

The Role of Sigma 1 Receptor as a Neuroprotective Target in Glaucoma

  • Chapter
  • First Online:
Sigma Receptors: Their Role in Disease and as Therapeutic Targets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 964))

Abstract

The role of sigma 1 receptor (S1R) in glaucoma is emerging as a promising field of study. Glaucoma is an optic neuropathy that shares common pathogenic mechanisms with other neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease . S1R modulates multiple cellular functions associated with neurodegeneration . These include Ca2+ ion homeostasis, endoplasmic reticulum (ER) and oxidative stress , survival signaling pathways, neurotrophin secretion, and glial activation. S1R may also have neurorestorative properties including enhancement of neuronal plasticity and neurite outgrowth. Recent studies using agonists for S1R within the eye provide hope that it could be a therapeutic target for glaucoma. Understanding the role of S1R in glaucoma may help us to stop the progression of this sight threatening disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tham YC et al (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    Article  PubMed  Google Scholar 

  2. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kass MA et al (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):701–713 discussion 829-30

    Article  PubMed  Google Scholar 

  4. Heijl A et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120(10):1268–1279

    Article  PubMed  Google Scholar 

  5. Anderson DR (2003) Collaborative normal tension glaucoma study. Curr Opin Ophthalmol 14(2):86–90

    Article  PubMed  Google Scholar 

  6. Gordon MO et al (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):714–720 discussion 829-30

    Article  PubMed  Google Scholar 

  7. Nguyen L et al (2015) Role of sigma-1 receptors in neurodegenerative diseases. J Pharmacol Sci 127(1):17–29

    Article  CAS  PubMed  Google Scholar 

  8. Jindal V (2013) Glaucoma: an extension of various chronic neurodegenerative disorders. Mol Neurobiol 48(1):186–189

    Article  CAS  PubMed  Google Scholar 

  9. He Y, Ge J, Tombran-Tink J (2008) Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Invest Ophthalmol Vis Sci 49(11):4912–4922

    Article  PubMed  Google Scholar 

  10. Anholt RR, Carbone MA (2013) A molecular mechanism for glaucoma: endoplasmic reticulum stress and the unfolded protein response. Trends Mol Med 19(10):586–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nickells RW (2012) The cell and molecular biology of glaucoma: mechanisms of retinal ganglion cell death. Invest Ophthalmol Vis Sci 53(5):2476–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crish SD, Calkins DJ (2011) Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms. Neuroscience 176:1–11

    Article  CAS  PubMed  Google Scholar 

  13. Chong RS, Martin KR (2015) Glial cell interactions and glaucoma. Curr Opin Ophthalmol 26(2):73–77

    Article  PubMed  PubMed Central  Google Scholar 

  14. Howell GR et al (2007) Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2 J glaucoma. J Cell Biol 179(7):1523–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fortune B et al (2004) Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci 45(6):1854–1862

    Article  PubMed  Google Scholar 

  16. Saleh M, Nagaraju M, Porciatti V (2007) Longitudinal evaluation of retinal ganglion cell function and IOP in the DBA/2 J mouse model of glaucoma. Invest Ophthalmol Vis Sci 48(10):4564–4572

    Article  PubMed  PubMed Central  Google Scholar 

  17. Libby RT et al (2005) Inherited glaucoma in DBA/2 J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(5):637–648

    Article  PubMed  Google Scholar 

  18. Dai C et al (2012) Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure. Glia 60(1):13–28

    Article  PubMed  Google Scholar 

  19. Bosco A, Steele MR, Vetter ML (2011) Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 519(4):599–620

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hernandez MR (2000) The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 19(3):297–321

    Article  CAS  PubMed  Google Scholar 

  21. Bosco A et al (2016) Glial coverage in the optic nerve expands in proportion to optic axon loss in chronic mouse glaucoma. Exp Eye Res 150:34–43

    Article  CAS  PubMed  Google Scholar 

  22. Sun D et al (2009) The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J Comp Neurol 516(1):1–19

    Article  PubMed  PubMed Central  Google Scholar 

  23. Su TP et al (2016) The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol Sci 37(4):262–278

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi T, Su TP (2003) Intracellular dynamics of sigma-1 receptors (sigma(1) binding sites) in NG108-15 cells. J Pharmacol Exp Ther 306(2):726–733

    Article  CAS  PubMed  Google Scholar 

  25. Mori T et al (2013) Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS One 8(10):e76941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mavlyutov TA, Epstein M, Guo LW (2015) Subcellular localization of the sigma-1 receptor in retinal neurons – an electron microscopy study. Sci Rep 5:10689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ola MS et al (2001) Expression pattern of sigma receptor 1 mRNA and protein in mammalian retina. Brain Res Mol Brain Res 95(1–2):86–95

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bucolo C et al (1999) Sigma1 recognition sites in rabbit iris-ciliary body: topical sigma1-site agonists lower intraocular pressure. J Pharmacol Exp Ther 289(3):1362–1369

    CAS  PubMed  Google Scholar 

  29. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610

    Article  CAS  PubMed  Google Scholar 

  30. Libby RT et al (2005) Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 1(1):17–26

    Article  CAS  PubMed  Google Scholar 

  31. Wang J et al (2015) Sigma 1 receptor regulates the oxidative stress response in primary retinal Muller glial cells via NRF2 signaling and system xc(−), the Na(+)-independent glutamate-cystine exchanger. Free Radic Biol Med 86:25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao XF et al (2012) Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels. PLoS One 7(11):e49384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johannessen M et al (2009) Voltage-gated sodium channel modulation by sigma-receptors in cardiac myocytes and heterologous systems. Am J Physiol Cell Physiol 296(5):C1049–C1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balasuriya D, Stewart AP, Edwardson JM (2013) The sigma-1 receptor interacts directly with GluN1 but not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci 33(46):18219–18224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kourrich S et al (2013) Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 152(1–2):236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mueller BH 2nd et al (2013) Sigma-1 receptor stimulation attenuates calcium influx through activated L-type Voltage Gated Calcium Channels in purified retinal ganglion cells. Exp Eye Res 107:21–31

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Duncan G (2006) Silencing of sigma-1 receptor induces cell death in human lens cells. Exp Cell Res 312(8):1439–1446

    Article  CAS  PubMed  Google Scholar 

  38. Martin PM et al (2004) The sigma receptor ligand (+)-pentazocine prevents apoptotic retinal ganglion cell death induced in vitro by homocysteine and glutamate. Brain Res Mol Brain Res 123(1–2):66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith SB, J. D, Dun Y, Mysona B, Roon P, PM M, Ganapathy V (2008) In vivo protection against retinal neurodegeneration by sigma receptor 1 ligand (+)-pentazocine. Invest Ophthalmol Vis Sci 49(9):4154–4161

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mueller BH 2nd et al (2014) Sigma-1 receptor stimulation protects retinal ganglion cells from ischemia-like insult through the activation of extracellular-signal-regulated kinases 1/2. Exp Eye Res 128:156–169

    Article  CAS  PubMed  Google Scholar 

  41. Zhao J et al (2016) (+)-pentazocine reduces nmda-induced murine retinal ganglion cell death through a sigmar1-dependent mechanism. Invest Ophthalmol Vis Sci 57(2):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fujimoto M et al (2012) Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor. Synapse 66(7):630–639

    Article  CAS  PubMed  Google Scholar 

  43. Kimura Y et al (2013) Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling. PLoS One 8(10):e75760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Francardo V et al (2014) Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain 137(Pt 7):1998–2014

    Article  PubMed  Google Scholar 

  45. Pal A et al (2008) Juxtaposition of the steroid binding domain-like I and II regions constitutes a ligand binding site in the sigma-1 receptor. J Biol Chem 283(28):19646–19656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruoho AE et al (2012) The ligand binding region of the sigma-1 receptor: studies utilizing photoaffinity probes, sphingosine and N-alkylamines. Curr Pharm Des 18(7):920–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee IT, Chen S, Schetz JA (2008) An unambiguous assay for the cloned human sigma1 receptor reveals high affinity interactions with dopamine D4 receptor selective compounds and a distinct structure-affinity relationship for butyrophenones. Eur J Pharmacol 578(2–3):123–136

    Article  CAS  PubMed  Google Scholar 

  48. Cagnotto A, Bastone A, Mennini T (1994) [3H](+)-pentazocine binding to rat brain sigma 1 receptors. Eur J Pharmacol 266(2):131–138

    Article  CAS  PubMed  Google Scholar 

  49. Hayashi T, Su TP (2004) Sigma-1 receptor ligands: potential in the treatment of neuropsychiatric disorders. CNS Drugs 18(5):269–284

    Article  CAS  PubMed  Google Scholar 

  50. Su TP et al (1991) Sigma compounds derived from phencyclidine: identification of PRE-084, a new, selective sigma ligand. J Pharmacol Exp Ther 259(2):543–550

    CAS  PubMed  Google Scholar 

  51. Okuyama S et al (1993) NE-100, a novel sigma receptor ligand: in vivo tests. Life Sci 53(18):PL285-90

    Article  PubMed  Google Scholar 

  52. Matsumoto RR et al (1995) Characterization of two novel sigma receptor ligands: antidystonic effects in rats suggest sigma receptor antagonism. Eur J Pharmacol 280(3):301–310

    Article  CAS  PubMed  Google Scholar 

  53. Palmer CP et al (2007) Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines. Cancer Res 67(23):11166–11175

    Article  CAS  PubMed  Google Scholar 

  54. Fontanilla D et al (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323(5916):934–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schlamp CL et al (2006) Progressive ganglion cell loss and optic nerve degeneration in DBA/2 J mice is variable and asymmetric. BMC Neurosci 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu LL et al (2010) Expression of sigma receptor 1 mRNA and protein in rat retina. Neuroscience 167(4):1151–1159

    Article  CAS  PubMed  Google Scholar 

  57. Sacca SC et al (2016) The outflow pathway: a tissue with morphological and functional unity. J Cell Physiol 231:1876–1893

    Article  CAS  PubMed  Google Scholar 

  58. Berridge MJ, Bootman MD, Lipp P (1998) Calcium – a life and death signal. Nature 395(6703):645–648

    Article  CAS  PubMed  Google Scholar 

  59. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6(11):889–898

    Article  CAS  PubMed  Google Scholar 

  60. Calkins DJ (2012) Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res 31(6):702–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brady S, Morfini G (2010) A perspective on neuronal cell death signaling and neurodegeneration. Mol Neurobiol 42(1):25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoshida Y, Imai S (1997) Structure and function of inositol 1,4,5-trisphosphate receptor. Jpn J Pharmacol 74(2):125–137

    Article  CAS  PubMed  Google Scholar 

  63. Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124(2):195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang H, Cuevas J (2002) Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J Neurophysiol 87(6):2867–2879

    CAS  PubMed  Google Scholar 

  65. Tchedre KT et al (2008) Sigma-1 receptor regulation of voltage-gated calcium channels involves a direct interaction. Invest Ophthalmol Vis Sci 49(11):4993–5002

    Article  PubMed  Google Scholar 

  66. Hayashi T, Fujimoto M (2010) Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol Pharmacol 77(4):517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ha Y et al (2011) Sigma receptor 1 modulates endoplasmic reticulum stress in retinal neurons. Invest Ophthalmol Vis Sci 52(1):527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ha Y et al (2014) Sigma receptor 1 modulates ER stress and Bcl2 in murine retina. Cell Tissue Res 356(1):15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pal A et al (2012) The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol 682(1–3):12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang L et al (2012) Sigma 1 receptor stimulation protects against oxidative damage through suppression of the ER stress responses in the human lens. Mech Ageing Dev 133(11–12):665–674

    Article  CAS  PubMed  Google Scholar 

  71. Bucolo C et al (2006) Sigma receptor ligands protect human retinal cells against oxidative stress. Neuroreport 17(3):287–291

    Article  CAS  PubMed  Google Scholar 

  72. Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12(8):564–571

    Article  CAS  PubMed  Google Scholar 

  73. Kruk J, Kubasik-Kladna K, Aboul-Enein HY (2015) The role oxidative stress in the pathogenesis of eye diseases: current status and a dual role of physical activity. Mini-Rev Med Chem 16(3):241–257

    Article  PubMed  Google Scholar 

  74. Pinazo-Duran MD et al (2015) Oxidative stress and mitochondrial failure in the pathogenesis of glaucoma neurodegeneration. Prog Brain Res 220:127–153

    Article  PubMed  Google Scholar 

  75. Doucette LP et al (2015) The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol 60(4):310–326

    Article  PubMed  Google Scholar 

  76. Dun Y et al (2007) Prevention of excitotoxicity in primary retinal ganglion cells by (+)-pentazocine, a sigma receptor-1 specific ligand. Invest Ophthalmol Vis Sci 48(10):4785–4794

    Article  PubMed  PubMed Central  Google Scholar 

  77. Smith SB et al (2008) In vivo protection against retinal neurodegeneration by sigma receptor 1 ligand (+)-pentazocine. Invest Ophthalmol Vis Sci 49(9):4154–4161

    Article  PubMed  PubMed Central  Google Scholar 

  78. Meunier J, Hayashi T (2010) Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB. J Pharmacol Exp Ther 332(2):388–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Acheson A et al (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374(6521):450–453

    Article  CAS  PubMed  Google Scholar 

  80. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pease ME et al (2000) Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 41(3):764–774

    CAS  PubMed  Google Scholar 

  82. Quigley HA et al (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 41(11):3460–3466

    CAS  PubMed  Google Scholar 

  83. Kikuchi-Utsumi K, Nakaki T (2008) Chronic treatment with a selective ligand for the sigma-1 receptor chaperone, SA4503, up-regulates BDNF protein levels in the rat hippocampus. Neurosci Lett 440(1):19–22

    Article  CAS  PubMed  Google Scholar 

  84. Malik M et al (2015) The effects of sigma (sigma1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice. Br J Pharmacol 172(10):2519–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao J et al (2014) Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia. Invest Ophthalmol Vis Sci 55(6):3375–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hall AA, Y. H, CT A Jr, Cuevas J, KR P (2009) Sigma receptors suppress multiple aspects of microglial activation. Glia 57(7):744–754

    Article  PubMed  Google Scholar 

  87. Shanmugam A et al (2014) Sigma receptor 1 activation attenuates release of inflammatory cytokines MIP1gamma, MIP2, MIP3alpha, and IL12 (p40/p70) by retinal Muller glial cells. J Neurochem 132(5):546–558

    Google Scholar 

  88. Campana G et al (2002) Ocular hypotensive action of topical flunarizine in the rabbit: role of sigma 1 recognition sites. J Pharmacol Exp Ther 303(3):1086–1094

    Article  CAS  PubMed  Google Scholar 

  89. Sun X et al (2012) Pregnenolone sulfate decreases intraocular pressure and changes expression of sigma receptor in a model of chronic ocular hypertension. Mol Biol Rep 39(6):6607–6614

    Article  CAS  PubMed  Google Scholar 

  90. Ha Y, Saul A, Tawfik A, Williams C, Bollinger K, Smith R, Tachikawa M, Zorrilla E, Ganapathy V, SB S (2011) Late-onset inner retinal dysfunction in mice lacking sigma receptor 1 (σR1). Invest Ophthalmol Vis Sci 52(10):7749–7760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Urfer R et al (2014) Phase II trial of the Sigma-1 receptor agonist cutamesine (SA4503) for recovery enhancement after acute ischemic stroke. Stroke 45(11):3304–3310

    Article  CAS  PubMed  Google Scholar 

  92. Francardo V (2014) Sigma-1 receptor: a potential new target for Parkinson’s disease? Neural Regen Res 9(21):1882–1883

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hyrskyluoto A et al (2013) Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-kappaB pathway. Cell Death Dis 4:e646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hedskog L et al (2013) Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci U S A 110(19):7916–7921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ruscher K et al (2011) The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain 134(Pt 3):732–746

    Article  PubMed  Google Scholar 

  96. Moriguchi S et al (2011) Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice. J Neurochem 117(5):879–891

    Article  CAS  PubMed  Google Scholar 

  97. Ola MS et al (2002) Analysis of sigma receptor (sigmaR1) expression in retinal ganglion cells cultured under hyperglycemic conditions and in diabetic mice. Brain Res Mol Brain Res 107(2):97–107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Bollinger M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Mysona, B., Kansara, N., Zhao, J., Bollinger, K. (2017). The Role of Sigma 1 Receptor as a Neuroprotective Target in Glaucoma. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, vol 964. Springer, Cham. https://doi.org/10.1007/978-3-319-50174-1_20

Download citation

Publish with us

Policies and ethics