Skip to main content

Design of Clinical Studies in Early Development

  • Chapter
  • First Online:
  • 1889 Accesses

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 25))

Abstract

There is growing philosophy in the realm of drug discovery that rapid feedback from strategic and tactical early clinical studies is one of the most vital components to optimizing the cycle of successful drug design. The current early development paradigms however do not always support the rapid relay of this vital clincal information to early drug discovery teams. Several industrial, government and academic initiatives are underway to improve the efficiency of the discovery to clinical information feedback loop, thereby increasing the number of drug therapies ultimately commercialized. Success will lie in early, proactive clinical biomarker and diagnostics identification and/or co-development, an early and sustained focus on predictive model development, application of early, adaptive clinical design strategies, and the use of fully integrated information technology (IT) and knowledge management (KM) systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51.

    Article  CAS  PubMed  Google Scholar 

  2. Kaitin KI, DiMasi JA. Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin Pharmacol Ther. 2011;89:183–8.

    Article  CAS  PubMed  Google Scholar 

  3. DiMasi JA, Feldman L, Seckler A, Wilson A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010;87:272–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–6.

    Article  CAS  PubMed  Google Scholar 

  5. United States Department of Health and Human Services Food and Drug Administration. Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Product. 2004.

    Google Scholar 

  6. Jacobson RS, et al. A federated network for translational cancer research using clinical data and Biospecimens. Cancer Res. 2015;75:5194–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferraldeschi R, Attard G, de Bono JS. Novel strategies to test biological hypotheses in early drug development for advanced prostate cancer. Clin Chem. 2013;59:75–84.

    Article  CAS  PubMed  Google Scholar 

  8. Yap TA, Sandhu SK, Workman P, de Bono JS. Envisioning the future of early anticancer drug development. Nat Rev Cancer. 2010;10:514–23.

    Article  CAS  PubMed  Google Scholar 

  9. Workman P. Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: unfolding the relationship between pharmacokinetics and pharmacodynamics. Mol Cancer Ther. 2003;2:131–8.

    Article  CAS  PubMed  Google Scholar 

  10. National Institutes of Health Clinical Center Website. National Institutes of Health Bench-to-Bedside Program. http://www.cc.nih.gov/ccc/btb/about.html. Accessed 2016.

  11. Orlando J,Pringer P,Smith H. Bench-to-bedside program report (1999–2013). National Institutes of Health, Aug 2014.

    Google Scholar 

  12. Drolet BC, Lorenzi NM. Translational research: understanding the continuum from bench to bedside. Transl Res. 2011;157:1–5.

    Article  PubMed  Google Scholar 

  13. Jane Budge E, Maria Tsoti S, James Howgate D, Sivakumar S, Jalali M. Collective intelligence for translational medicine: crowdsourcing insights and innovation from an interdisciplinary biomedical research community. Ann Med. 2015;47:570–5.

    Article  CAS  Google Scholar 

  14. Wang X, Marincola FM. A decade plus of translation: what do we understand? Clin Transl Med. 2012;1:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mobasheri A. Comparative medicine in the twenty-first century: where are we now and where do we go from here? Front Vet Sci. 2015;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khoury MJ, Rich EC, Randhawa G, Teutsch SM, Niederhuber J. Comparative effectiveness research and genomic medicine: an evolving partnership for 21st century medicine. Genet Med. 2009;11:707–11.

    Article  CAS  PubMed  Google Scholar 

  17. Fluckiger SL. Industry’s challenge to academia: changing the bench to bedside paradigm. Exp Biol Med (Maywood). 2006;231:1257–61.

    Google Scholar 

  18. Selen A, et al. The biopharmaceutics risk assessment roadmap for optimizing clinical drug product performance. J Pharm Sci. 2014;103:3377–97.

    Article  CAS  PubMed  Google Scholar 

  19. Patterson SD. Experiences with learning and confirming in drug and biological development. Clin Pharmacol Ther. 2010;88:161–3.

    Article  CAS  PubMed  Google Scholar 

  20. National Institutes of Health (NIH): Department of Health and Human Services Website. NIH Roadmap and Roadmap-affiliated Initiatives. 2004. http://www.niehs.nih.gov/funding/grants/announcements/roadmap/. Accessed 28 Aug 2016.

  21. National Institutes of Health (NIH): Department of Health and Human Services, National Cancer Institute, National Institute on Dental and Craniofacial Research. Funding Announcement: Specialized Programs of Research Excellence (SPOREs) in Human Cancers for Years 2015, 2016, and 2017 (P50). http://grants.nih.gov/grants/guide/pa-files/PAR-14-353.html. Accessed 26 Sept 2014

  22. MdBio Foundation Inc. Website. About MdBio Foundation. http://www.mdbiofoundation.org/?page_id=365. Accessed 28 Aug 2016.

  23. Lehmann F, Lacombe D, Therasse P, Eggermont AM. Integration of translational research in the European Organization for Research and Treatment of cancer research (EORTC) clinical trial cooperative group mechanisms. J Transl Med. 2003;1:1–5.

    Article  Google Scholar 

  24. Cameron D, et al. Research-intensive cancer care in the NHS in the UK. Ann Oncol. 2011;22:vii29–35.

    Article  PubMed  Google Scholar 

  25. National Institutes of Health (NIH) National Center for Advancing Translational Sciences Website. National Center for Advancing Translational Sciences Programs and Initiatives. https://ncats.nih.gov/programs. Accessed 28 Aug 2016.

  26. Hinman LM, et al. The drug diagnostic co-development concept paper commentary from the 3rd FDA-DIA-PWG-PhRMA-BIO pharmacogenomics workshop. Pharmacogenomics J. 2006;6:375–80.

    Article  CAS  PubMed  Google Scholar 

  27. Taube SE, et al. A perspective on challenges and issues in biomarker development and drug and biomarker codevelopment. J Natl Cancer Inst. 2009;101:1453–63.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ridolfi RL, Jamehdor MR, Arber JM. HER-2/neu testing in breast carcinoma: a combined immunohistochemical and fluorescence in situ hybridization approach. Mod Pathol. 2000;13:866–73.

    Article  CAS  PubMed  Google Scholar 

  29. Phillips KA, Van Bebber S, Issa AM. Diagnostics and biomarker development: priming the pipeline. Nat Rev Drug Discov. 2006;5:463–9.

    Article  CAS  PubMed  Google Scholar 

  30. King WC, et al. Objectively-measured sedentary time and cardiometabolic health in adults with severe obesity. Prev Med. 2015;84:12–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jeffrey BA, et al. Self-reported adherence with the use of a device in a clinical trial as validated by electronic monitors: the VIBES study. BMC Med Res Methodol. 2012;12:1–7.

    Article  Google Scholar 

  32. Fleming S, Barsdorf AI, Howry C, O’Gorman H, Coons SJ. Optimizing electronic capture of clinical outcome assessment data in clinical trials: the case of patient-reported endpoints. Ther Innov Regul Sci. 2015;49:797–804.

    Article  Google Scholar 

  33. Robiner WN, Flaherty N, Fossum TA, Nevins TE. Desirability and feasibility of wireless electronic monitoring of medications in clinical trials. Transl Behav Med. 2015;5:285–93.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rapport F, et al. Qualitative research within trials: developing a standard operating procedure for a clinical trials unit. Trials. 2013;14:1–8.

    Article  Google Scholar 

  35. Edwards AM, Bountra C, Kerr DJ, Willson TM. Open access chemical and clinical probes to support drug discovery. Nat Chem Biol. 2009;5:436–40.

    Article  CAS  PubMed  Google Scholar 

  36. Leonowens C, et al. Concomitant oral and intravenous pharmacokinetics of trametinib, a MEK inhibitor, in subjects with solid tumours. Br J Clin Pharmacol. 2014;78:524–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta UC, Bhatia S, Garg A, Sharma A, Choudhary V. Phase 0 clinical trials in oncology new drug development. Perspect Clin Res. 2011;2:13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yamazaki K, Kanaoka M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci. 2004;93:1480–94.

    Article  CAS  PubMed  Google Scholar 

  39. Hill AP, Young RJ. Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Discov Today. 2010;15:648–55.

    Article  CAS  PubMed  Google Scholar 

  40. Cummins DJ, Bell MA. Integrating everything: The molecule selection toolkit, a system for compound prioritization in drug discovery. J Med Chem. 2016;59:6999–7010.

    Article  CAS  PubMed  Google Scholar 

  41. Ayers D, Day PJ. Systems medicine: the application of systems biology approaches for modern medical research and drug development. Mol Biol Int. 2015;2015:8.

    Article  Google Scholar 

  42. Murphy RF. An active role for machine learning in drug development. Nat Chem Biol. 2011;7:327–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maeda K, Sugiyama Y. Novel strategies for microdose studies using non-radiolabeled compounds. Adv Drug Deliv Rev. 2011;63:532–8.

    Article  CAS  PubMed  Google Scholar 

  44. Burt T, et al. Microdosing and other phase 0 clinical trials: facilitating translation in drug development. Clin Transl Sci. 2016;9:74–88.

    Article  CAS  PubMed  Google Scholar 

  45. Mahajan R, Gupta K. Adaptive design clinical trials: methodology, challenges and prospect. Indian J Pharm. 2010;42:201–7.

    Article  Google Scholar 

  46. Chow SC, Chang M. Adaptive design methods in clinical trials—a review. Orphanet J Rare Dis. 2008;3:11.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lappin G, Garner RC. The utility of microdosing over the past 5 years. Expert Opin Drug Metab Toxicol. 2008;4:1499–506.

    Article  CAS  PubMed  Google Scholar 

  48. Bauer M, Wagner CC, Langer O. Microdosing studies in humans: the role of positron emission tomography. Drugs R&D. 2008;9:73–81.

    Article  CAS  Google Scholar 

  49. Minamide Y, Osawa Y, Nishida H, Igarashi H, Kudoh S. A highly sensitive LC-MS/MS method capable of simultaneously quantitating celiprolol and atenolol in human plasma for a cassette cold-microdosing study. J Sep Sci. 2011;34:1590–8.

    Article  CAS  PubMed  Google Scholar 

  50. Maeda K, et al. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther. 2011;90:575–81.

    Article  CAS  PubMed  Google Scholar 

  51. Nahata MC, Allen Jr LV. Extemporaneous drug formulations. Clin Ther. 2008;30:2112–9.

    Article  PubMed  Google Scholar 

  52. Thombre AG, Berchielli A, Rogers JF. Extemporaneously prepared controlled release formulations for accelerating the early phase development of drug candidates. Drug Discov Today. 2014;19:694–700.

    Article  CAS  PubMed  Google Scholar 

  53. Ayad MH. Rational formulation strategy from drug discovery profiling to human proof of concept. Drug Deliv. 2015;22:877–84.

    Article  CAS  PubMed  Google Scholar 

  54. Stanton D. Pfizer teams with GEA and G-CON to “transform” oral solid dose industry. 2013. http://www.in-pharmatechnologist.com/Processing/Pfizer-teams-with-GEA-and-G-CON-to-transform-oral-solid-dose-industry?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright. Accessed 28 Aug 2016.

  55. Shoji H, et al. Phase I clinical trial of oral administration of S-1 in combination with intravenous gemcitabine and cisplatin in patients with advanced biliary tract cancer. Jpn J Clin Oncol. 2016;46:132–7.

    PubMed  Google Scholar 

  56. Sargent DJ, Korn EL. Decade in review—clinical trials: shifting paradigms in cancer clinical trial design. Nat Rev Clin Oncol. 2014;11:625–6.

    Article  CAS  PubMed  Google Scholar 

  57. Wong DF, Tauscher J, Grunder G. The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology. 2008;34:187–203.

    Article  PubMed  Google Scholar 

  58. Besnard J, et al. Automated design of ligands to polypharmacological profiles. Nature. 2012;492:215–20.

    Article  CAS  PubMed  Google Scholar 

  59. Arrowsmith CH, et al. The promise and peril of chemical probes. Nat Chem Biol. 2015;11:536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret S. Landis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Landis, M.S. (2017). Design of Clinical Studies in Early Development. In: Bhattachar, S., Morrison, J., Mudra, D., Bender, D. (eds) Translating Molecules into Medicines. AAPS Advances in the Pharmaceutical Sciences Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-50042-3_9

Download citation

Publish with us

Policies and ethics