Skip to main content

A Scalable and Systolic Architectures of Montgomery Modular Multiplication for Public Key Cryptosystems Based on DSPs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10076))

Abstract

The arithmetic in a finite field constitutes the core of Public Key Cryptography like RSA, ECC or pairing-based cryptography. This paper discusses an efficient hardware implementation of the Coarsely Integrated Operand Scanning method (CIOS) of Montgomery modular multiplication combined with an effective systolic architecture designed with a Two-dimensional array of Processing Elements. The systolic architecture increases the speed of calculation by combining the concepts of pipelining and the parallel processing into a single concept. We propose the CIOS method for the Montgomery multiplication using a systolic architecture. As far as we know this is the first implementation of such design. The proposed architectures are designed for Field Programmable Gate Array platforms. They targeted to reduce the number of clock cycles of the modular multiplication. The presented implementation results of the CIOS algorithms focuses on different security levels useful in cryptography. This architecture have been designed in order to use the flexible DSP48 on Xilinx FPGAs. Our architecture is scalable and depends only on the number and size of words. For instance, we provide results of implementation for 8, 16, 32 and 64 bit long words in 33, 66, 132 and 264 clock cycles. We highlight the fact that for a given number of word, the number of clock cycles is constant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bigou, K., Tisserand, A.: Single base modular multiplication for efficient hardware rns implementations of ecc. In: Conference on Cryptographic Hardware and Embedded Systems, pp. 123–140, September 2015

    Google Scholar 

  2. Junfeng, F., Sakiyama, K., Verbauwhede, I.: Montgomery modular multiplication algorithm on multi-core systems. In: 2007 IEEE Workshop on Signal Processing Systems, pp. 261–266, October 2007

    Google Scholar 

  3. Hariri, A., Reyhani-Masoleh, A.: Bit-serial and bit-parallel montgomery multiplication and squaring over gf. IEEE Trans. Comput. 58(10), 1332–1345 (2009)

    Article  MathSciNet  Google Scholar 

  4. Harris, D., Krishnamurthy, R., Anders, M., Mathew, S., Hsu, S.: An improved unified scalable radix-2 montgomery multiplier. In: 17th IEEE Symposium on Computer Arithmetic, ARITH-17 2005, pp. 172–178, June 2005

    Google Scholar 

  5. Huang, M., Gaj, K., El-Ghazawi, T.: New hardware architectures for montgomery modular multiplication algorithm. IEEE Trans. Comput. 60(7), 923–936 (2011)

    Article  MathSciNet  Google Scholar 

  6. Huang, M., Gaj, K., Kwon, S., El-Ghazawi, T.: An optimized hardware architecture for the montgomery multiplication algorithm. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 214–228. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78440-1_13

    Chapter  Google Scholar 

  7. Lee, K.I.: Algorithm and VLSI architecture design for H.264/AVC Inter Frame Coding. Ph.D. thesis, National Cheng Kung University, Tainan, Taiwan (2007)

    Google Scholar 

  8. Iwamura, K., Matsumoto, T., Imai, H.: High-speed implementation methods for RSA scheme. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 221–238. Springer, Heidelberg (1993). doi:10.1007/3-540-47555-9_20

    Chapter  Google Scholar 

  9. Iwamura, K., Matsumoto, T., Imai, H.: Systolic-arrays for modular exponentiation using montgomery method. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 477–481. Springer, Heidelberg (1993). doi:10.1007/3-540-47555-9_43

    Chapter  Google Scholar 

  10. Joux, A.: A one round protocol for tripartite diffiehellman. J. Cryptology 17(4): 263–276 (2004)

    Google Scholar 

  11. Ko, C.K., Acar, T., Jr. Kaliski, B.S.: Analyzing and comparing montgomery multiplication algorithms. IEEE Micro 16(3), 26–33 (1996)

    Google Scholar 

  12. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    Google Scholar 

  13. Kung, H.T.: Why systolic architectures? Computer 15(1), 37–46 (1982)

    Article  Google Scholar 

  14. Manochehri, K., Pourmozafari, S., Sadeghiyan, B.: Montgomery, rns for rsa hardware implementation. In: Computing and Informatics, vol. 29, pp. 849–880, December 201

    Google Scholar 

  15. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.1007/3-540-39799-X_31

    Chapter  Google Scholar 

  16. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ors, S.B., Batina, L., Preneel, B., Vandewalle, J.: Hardware implementation of a montgomery modular multiplier in a systolic array. In: Parallel and Distributed Processing Symposium, p. 8, April 2003

    Google Scholar 

  18. Perin, G., Mesquita, D.G., Martins, J.B.: Montgomery modular multiplication on reconfigurable hardware: systolic versus multiplexed implementation. Int. J. Reconfig. Comput. 2011, 601–610 (2011)

    Google Scholar 

  19. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tenca, A.F., Koç, Ç.K.: A scalable architecture for montgomery nultiplication. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 94–108. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5_10

    Chapter  Google Scholar 

  21. Vucha, M., Rajawat, A.: Design and fpga implementation of systolic array architecture for matrix multiplication. Int. J. Comput. Appl. 26(3), 0975 s8887 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Mrabet .

Editor information

Editors and Affiliations

A Architecture

A Architecture

Fig. 11.
figure 11

All processing elements.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Mrabet, A. et al. (2016). A Scalable and Systolic Architectures of Montgomery Modular Multiplication for Public Key Cryptosystems Based on DSPs. In: Carlet, C., Hasan, M., Saraswat, V. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2016. Lecture Notes in Computer Science(), vol 10076. Springer, Cham. https://doi.org/10.1007/978-3-319-49445-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49445-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49444-9

  • Online ISBN: 978-3-319-49445-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics