Skip to main content

Targeting Genome Instability and DNA Repair

  • Chapter
  • First Online:
  • 123k Accesses

Abstract

Genomic instability is a characteristic of most human cancers and plays critical roles in both cancer development and progression. There are various forms of genomic instability arising from many different pathways, such as DNA damage from endogenous and exogenous sources, centrosome amplification, telomere damage, and epigenetic modifications. DNA repair pathways can enable tumor cells to survive DNA damage. The failure to respond to DNA damage is a characteristic associated with genomic instability. Understanding of genomic instability in cancer is still very limited, but the further understanding of the molecular mechanisms through which the DNA damage response operates, in combination with the elucidation of the genetic interactions between DNA damage response pathways and other cell pathways, will provide therapeutic opportunities for the personalized medicine of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferguson LR, Chen H, Collins AR et al (2015) Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 35:S5–S24

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee JH, Jeong SY, Kim MJ et al (2015) MicroRNA-22 suppresses DNA repair and promotes genomic instability through targeting of MDC1. Cancer Res 75:1298

    Article  CAS  PubMed  Google Scholar 

  3. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability — an evolving hallmark of cancer. Nat Rev Cancer 11:220–228

    Article  CAS  Google Scholar 

  5. Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386:623–627

    Article  CAS  PubMed  Google Scholar 

  6. Fishel R, Lescoe MK, Rao MRS, Copeland NG (1993) The human mutator gene homolog MSH2 and its association with hereditary non-polyposis colon cancer. Cell 75:1027–1038

    Article  CAS  PubMed  Google Scholar 

  7. Leach FS, Nicolaides NC, Papadopoulos N, Liu B (1993) Mutations of a mutS homolog in hereditary non-polyposis colorectal cancer. Cell 75:1215–1225

    Article  CAS  PubMed  Google Scholar 

  8. Fackenthal JD, Olopade OI (2007) Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer 7:937–948

    Article  CAS  PubMed  Google Scholar 

  9. Bouwman P, Aly A, Escandell JM et al (2010) 53BP1 loss rescues BRCA1 deficiency and is associated with triple negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 17:688–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levy LE (2010) Fanconi anemia and breast cancer susceptibility meet again. Nat Genet 42:368–369

    Article  Google Scholar 

  11. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  CAS  PubMed  Google Scholar 

  12. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    CAS  PubMed  Google Scholar 

  13. Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432:338–341

    Article  CAS  PubMed  Google Scholar 

  14. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    Article  CAS  PubMed  Google Scholar 

  15. Gorgoulis VG, Vassiliou LVF, Karakaidos P et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    Article  CAS  PubMed  Google Scholar 

  16. Bartkova J, Hořejší Z, Koed K et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    Article  CAS  PubMed  Google Scholar 

  17. Bartkova J, Rezaei N, Liontos M et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    Article  CAS  PubMed  Google Scholar 

  18. Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyperreplication. Nature 444:638–642

    Article  PubMed  Google Scholar 

  19. Blackburn EHK (2000) Telomeres and telomerase. J Med 49:59–65

    CAS  Google Scholar 

  20. Greider CW (1991) Telomeres. Curr Opin Cell Biol 3:444–451

    Article  CAS  PubMed  Google Scholar 

  21. Konishi A, de Lange T (2008) Cell cycle control of telomere protection and NHEJ revealed by a ts mutation in the DNA-binding domain of TRF2. Genes Dev 22:1221–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karlseder J, Hoke K, Mirzoeva OK et al (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2:E240

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hockemeyer D, Sfeir AJ, Shay JW et al (2005) POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J 24:2667–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Lange T (2010) How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol 75:167–177

    Article  PubMed  Google Scholar 

  25. Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb. Mutat Res 256:271–282

    Article  CAS  PubMed  Google Scholar 

  26. Levy MZ, Allsopp RC, Futcher AB et al (1992) Telomere end-replication problem and cell aging. J Mol Biol 225:951–960

    Article  CAS  PubMed  Google Scholar 

  27. Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579

    Article  CAS  PubMed  Google Scholar 

  28. Harley CB, Sherwood SW (1997) Telomerase, checkpoints and cancer. Cancer Surv 29:263–284

    CAS  PubMed  Google Scholar 

  29. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression. Nat Rev Cancer 2:815–825

    Article  CAS  PubMed  Google Scholar 

  30. Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Doxsey S (2001) Re-evaluating centrosome function. Nat Rev Mol Cell Biol 2:688–698

    Article  CAS  PubMed  Google Scholar 

  32. Ko MA, Rosario CO, Hudson JW et al (2005) Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat Genet 37:883–888

    Article  CAS  PubMed  Google Scholar 

  33. Khodjakov A (2002) De novo formation of centrosomes in vertebrate cells arrested during S phase. J Cell Biol 158:1171–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Glover DM, Leibowitz MH, McLean DA et al (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 891:95–105

    Article  Google Scholar 

  35. Maxwell CA, Keats JJ, Belch AR et al (2005) Receptor forhyaluronan-mediated motility correlates with centrosome abnormalities in multiple myeloma and maintains mitotic integrity. Cancer Res 56:850–860

    Google Scholar 

  36. Ogden A, Rida PC, Aneja R (2012) Let’s huddle to prevent a muddle: centrosome declustering as an attractive anticancer strategy. Cell Death Differ 19:1255–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gergely F, Basto R (2008) Multiple centrosomes: together they stand, divided they fall. Genes Dev 22:2291–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marthien V, Piel M, Basto RJ (2012) Never tear us apart – the importance of centrosome clustering. Cell Sci 125:3281–3292

    Article  Google Scholar 

  39. Fang X, Zhang R (2011) Aneuploidy and tumourigenesis. Semin Cell Dev Biol 22:595–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  CAS  PubMed  Google Scholar 

  41. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  42. Hitchins MP (2010) Inheritance of epigenetic aberrations (constitutional epimutations) in cancer susceptibility. Adv Genet 70:201–243

    CAS  PubMed  Google Scholar 

  43. Sproul D, Gilbert N, Bickmore WA (2005) The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 6:775–781

    Article  CAS  PubMed  Google Scholar 

  44. Mailand N, Bekker JS, Faustrup H et al (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131:887–900

    Article  CAS  PubMed  Google Scholar 

  45. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287

    Article  CAS  PubMed  Google Scholar 

  46. Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–133

    Article  CAS  PubMed  Google Scholar 

  47. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  48. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447(941):950

    Google Scholar 

  49. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADPribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  CAS  PubMed  Google Scholar 

  50. Jirincy J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    Google Scholar 

  51. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lieber MR (2010) NHEJ and its backup pathways in chromosomal translocations. Nat Struct Mol Biol 17:393–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31:9–18

    Article  CAS  PubMed  Google Scholar 

  54. Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12:554–564

    Article  CAS  PubMed  Google Scholar 

  55. Warmerdam DO, Kanaar R (2010) Dealing with DNA damage: relationships between checkpoint and repair pathways. Mutat Res 704:2–11

    Article  CAS  PubMed  Google Scholar 

  56. Swann PF, Waters TR, Moulton DC (1996) Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 273:1109–1111

    Article  CAS  PubMed  Google Scholar 

  57. Helleday T, Petermann E, Lundin C et al (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204

    Article  CAS  PubMed  Google Scholar 

  58. Bryant HE, Schultz N, Thomas HD et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  CAS  PubMed  Google Scholar 

  59. O’Shaughnessy J, Osborne C, Pippen JE et al (2011) Iniparib plus chemotherapy in metastatic triple-negativebreast cancer. N Engl J Med 364:205–214

    Article  PubMed  Google Scholar 

  60. Zhaia L, Li S, Li X et al (2015) The nuclear expression of poly (ADP-ribose) polymerase-1 (PARP1) in invasive primary breast tumors is associated with chemotherapy sensitivity. Pathol Res Pract 211:130–137

    Article  Google Scholar 

  61. Frizzell KM, Kraus WL (2009) PARP inhibitors and the treatment of breast cancer: beyond BRCA1/2? Breast Cancer Res 11:111

    Article  PubMed  PubMed Central  Google Scholar 

  62. Durkacz BW, Omidiji O, Gray DA, Shall S (1980) (ADP-ribose)n participates in DNA excision repair. Nature 283:593–596

    Article  CAS  PubMed  Google Scholar 

  63. Rouleau M, Patel A, Hendzel MJ et al (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Plummer R, Jones C, Middleton M et al (2008) Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 14:7917–7923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Plummer R, Lorigan P, Steven N et al (2013) A phase II study of the potent PARP inhibitor, rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol 71(5):1191–1199

    Article  CAS  PubMed  Google Scholar 

  66. Penning TD, Zhu GD, Gandhi VB et al (2009) Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-Yl]-1h-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem 52:514–523

    Article  CAS  PubMed  Google Scholar 

  67. Kummar S, Kinders R, Gutierrez ME et al (2009) Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol 27:2705–2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Isakoff SJ, Overmoyer B, Tung NM et al (2010) A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. ASCO Annual Meeting Abstracts. 1019, JCO Vol 28: 1019

    Google Scholar 

  69. Fong PC, Yap TA, Boss DS et al (2009) Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 28:2512–2519

    Article  Google Scholar 

  70. Yamamoto N, Nokihara H, Yamada Y et al (2012) A phase I, dosefinding and pharmacokinetic study of olaparib (AZD2281) in Japanese patients with advanced solid tumors. Cancer Sci 103:504–509

    Article  CAS  PubMed  Google Scholar 

  71. Bundred N, Gardovskis J, Jaskiewicz J et al (2013) Evaluation of the pharmacodynamics and pharmacokinetics of the PARP inhibitor olaparib: a phase I multicenter trial in patients scheduled for elective breast cancer surgery. Investig New Drugs 31:949–958

    Article  CAS  Google Scholar 

  72. Samol J, Ranson M, Scott E et al (2012) Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Investig New Drugs 30:1493–1500

    Article  CAS  Google Scholar 

  73. Rajan A, Carter CA, Kelly RJ et al (2012) A phase I combination study of olaparib with cisplatin and gemcitabine in adults with solid tumors. Clin Cancer Res 18:2344–2351

    Article  CAS  PubMed  Google Scholar 

  74. Dean E, Middleton MR, Pwint T et al (2012) Phase I study to assess the safety and tolerability of olaparib in combination with bevacizumab in patients with advanced solid tumours. Br J Cancer 106:468–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu JF, Tolaney SM, Birrer M et al (2013) A phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. Eur J Cancer 49:2972–2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dent RA, Lindeman GJ, Clemons M et al (2013) Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res 15:R88

    Article  PubMed  PubMed Central  Google Scholar 

  77. Del Conte G, Sessa C, von Moos R et al (2014) Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Br J Cancer 111:651–659

    Article  PubMed  PubMed Central  Google Scholar 

  78. Audeh MW, Carmichael J, Penson RT et al (2010) Oral poly(ADPribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–251

    Article  CAS  PubMed  Google Scholar 

  79. Tutt A, Robson M, Garber JE et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244

    Article  CAS  PubMed  Google Scholar 

  80. Gelmon KA, Tischkowitz M, Mackay H et al (2011) Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 12:852–861

    Article  CAS  PubMed  Google Scholar 

  81. Bedikian AY, Papadopoulos NE, Kim KB et al (2009) A phase IB trial of intravenous INO-1001 plus oral temozolomide in subjects with unresectable stage-III or IV melanoma. Cancer Investig 27:756–763

    Article  CAS  Google Scholar 

  82. Plummer R, Stephens P, Aissat-Daudigny L et al (2014) Phase 1 dose escalation study of the PARP inhibitor CEP-9722 as monotherapy or in combination with temozolomide in patients with solid tumors. Cancer Chemother Pharmacol 74:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sargent DJ, Marsoni S, Monges G et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28:3219–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sinicrope FA, Foster NR, Thibodeau SN et al (2011) DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst 103:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McCabe N, Turner NC, Lord CJ et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115

    Article  CAS  PubMed  Google Scholar 

  86. Vilar E, Bartnik CM, Stenzel SL et al (2011) MRE11deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers. Cancer Res 71:2632–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Miquel C, Jacob S, Grandjouan S et al (2007) Frequent alteration of DNA damage signalling and repair pathways in human colorectal cancers with microsatellite instability. Oncogene 26:5919–5926

    Article  CAS  PubMed  Google Scholar 

  88. Papoutsis AJ, Borg JL, Selmin OI, Romagnolo DF (2012) BRCA-1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells. J Nutr Biochem 23:1324–1332

    Article  CAS  PubMed  Google Scholar 

  89. Kwon M, Godinho SA, Chandhok NS et al (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Castiel A, Visochek L, Mittelman L et al (2011) Aphenanthrene derived PARP inhibitor is an extra-centrosomes declustering agent exclusively eradicating human cancer cells. BMC Cancer 11:412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Curigliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Locatelli, M., Curigliano, G. (2017). Targeting Genome Instability and DNA Repair. In: Veronesi, U., Goldhirsch, A., Veronesi, P., Gentilini, O., Leonardi, M. (eds) Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48848-6_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48848-6_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48846-2

  • Online ISBN: 978-3-319-48848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics