Skip to main content

Development of a Master–Slave Finger Exoskeleton Driven by Pneumatic Artificial Muscles

  • Conference paper
  • First Online:
  • 2633 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 531))

Abstract

This paper presents a master–slave finger exoskeleton developed to allow subjects whose brain activity is being measured by functional magnetic resonance imaging (fMRI) to remotely perform tasks. The MRI environment requires the device to be free from metal components and strongly immobilized, which can reduce the device’s versatility and ease of setup. To overcome these limitations, we designed a finger exoskeleton using pneumatic artificial muscles, which can be made metal–free and used for not only actuators but also sensors. We also proposed a symmetric, bilateral control method for the device, and experimentally validated device performance and its control method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Craig, D., Takahashi, Der-Yeghiaian, L., Le, V., Motiwala, R.R., Cramer, S.C.: Robot-based hand motor therapy after stroke. Brain 131(2), 425–437 (2008)

    Google Scholar 

  2. Khanicheh, A., Muto, A., Triantafyllou, C., Weinberg, B., Astrakas, L., Tzika, A., Mavroidis, C.: fMRI-compatible rehabilitation hand device. J. Neuroeng. Rehabil. 3(1), 1 (2006)

    Article  Google Scholar 

  3. Braadbaart, L., Buchan, G., Williams, J.H.G., Waiter, G.D.: An fMRI compatible touchscreen to measure hand kinematics during a complex drawing task. Br. J. Appl. Sci. Technol. (2015)

    Google Scholar 

  4. Sergi, F., Erwin, A.C., O’Malley, M.K.: Interaction control capabilities of an MR-compatible compliant actuator for wrist sensorimotor protocols during fMRI. IEEE/ASME Trans. Mechatron. 20(6), 2678–2690 (2015)

    Google Scholar 

  5. Wege, A., Hommel, G.: Development and control of a hand exoskeleton for rehabilitation of hand injuries. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3046–3051. IEEE (2005)

    Google Scholar 

  6. Fu, Y., Wang, P., Wang, S.: Development of a multi-DOF exoskeleton based machine for injured fingers. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1946–1951. IEEE (2008)

    Google Scholar 

  7. Yamaura, H., Matsushita, K., Kato, R., Yokoi, H.: Development of hand rehabilitation system using wire-driven link mechanism for paralysis patients. In: IEEE International Conference on Robotics and Biomimetics, pp. 209–214. IEEE (2009)

    Google Scholar 

  8. Hioki, M., Kawasaki, H., Sakaeda, H., Nishimoto, Y., Mouri, T.: Finger rehabilitation support system using a multifingered haptic interface controlled by a surface electromyogram. J. Robot. 2011 (2011)

    Google Scholar 

  9. Noritsugu, T., Yamamoto, H., Sasaki, D., Takaiwa, M.: Wearable power assist device for hand grasping using pneumatic artificial rubber muscle. In: SICE Annual Conference, vol. 1, p. 420. SICE (2004)

    Google Scholar 

  10. Sun, Z., Bao, G., Li, X., Lu, J.: Angle measurement and calibration of force feedback dataglove. In: Proceedings of the JFPS International Symposium on Fluid Power, vol. 2008, pp. 483–488. The Japan Fluid Power System Society (2008)

    Google Scholar 

  11. Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L.F., Mosadegh, B., Whitesides, G.M., Walsh, C.J.: Towards a soft pneumatic glove for hand rehabilitation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1512–1517. IEEE (2013)

    Google Scholar 

  12. Teramae, T., Noda, T., Morimoto, J.: Optimal control approach for pneumatic artificial muscle with using pressure-force conversion model. In: IEEE International Conference on Robotics and Automation, pp. 4792–4797. IEEE (2014)

    Google Scholar 

  13. Ikeda, T., Matsushita, A., Saotome, K., Hasegawa, Y., Sankai, Y.: Pilot study of floor-reactive-force generator mounted on MRI compatible lower-extremity motion simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 311–316. IEEE (2012)

    Google Scholar 

  14. Tondu, B., Lopez, P.: Modeling and control of Mckibben artificial muscle robot actuators. IEEE Control Syst. Mag. 20(2), 15–38 (2000)

    Article  Google Scholar 

  15. Chou, C.-P., Hannaford, B.: Measurement and modeling of Mckibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)

    Article  Google Scholar 

  16. Doumit, M., Fahim, A., Munro, M.: Analytical modeling and experimental validation of the braided pneumatic muscle. IEEE Trans. Robot. 25(6), 1282–1291 (2009)

    Article  Google Scholar 

  17. Kogiso, K., Sawano, K., Itto, T., Sugimoto, K.: Identification procedure for Mckibben pneumatic artificial muscle systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3714–3721. IEEE (2012)

    Google Scholar 

  18. Ikemoto, S., Nishigori, Y., Hosoda, K.: Direct teaching method for musculoskeletal robots driven by pneumatic artificial muscles. In: IEEE International Conference on Robotics and Automation, pp. 3185–3191. IEEE (2012)

    Google Scholar 

  19. Ikemoto, S., Kayano, Y., Hosoda, K.: Active behavior of musculoskeletal robot arms driven by pneumatic artificial muscles to effectively receive human’s direct teaching. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4612–4617. IEEE (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 26700025, 23220004, 24000012, 15H01665.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takuya Urino or Shuhei Ikemoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Urino, T., Ikemoto, S., Hosoda, K. (2017). Development of a Master–Slave Finger Exoskeleton Driven by Pneumatic Artificial Muscles. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds) Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-48036-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48036-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48035-0

  • Online ISBN: 978-3-319-48036-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics