We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Inviscid Channel Flows | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Inviscid Channel Flows

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Non-Hydrostatic Free Surface Flows

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 783 Accesses

Abstract

The computation of non-hydrostatic inviscid flows is considered here. For steady irrotational flows, the energy head is a constant in all the points of the domain of the flow, making use of the energy principle simple. However, both the energy and momentum principles for non-hydrostatic flows are presented and discussed. Extended Boussinesq-type energy and momentum equations are derived using Picard iteration method (Matthew in Proceedings of the ICE 91(3):187–201, 1991), based on an iterative solution of the Cauchy–Riemann equations. The first and second iterative cycles are detailed, and the ensuing analytical predictors for the velocity components are carefully tested using a complete two-dimensional potential flow model based on the x-ψ method. Another set of Boussinesq-type equations is derived based on an approximate treatment of the flow net formulating the Euler’s equations in intrinsic coordinates (Hager and Hutter in Acta Mechanica 51(3–4):31–48, 1984a; 53(3–4), 183–200, 1984b). Picard iteration method is also presented in topography following curvilinear coordinates. The development is used to derive a generalization of Dressler’s (Journal of Hydraulic Research 16(3):205–222, 1978) theory, in which cnoidal and solitary wavelike solutions are embedded. Applications for steady potential flows are detailed, including critical flows over spillways, flows in free overfalls, transitions from mild to steep slopes, and flows in vertical sluice gates. The inclusion of vorticity in non-hydrostatic models is presented with a specific approximation for flows in free overfalls. An introduction to the mathematical theory of irrotational water waves is given based on the Serre–Green–Naghdi equations. The frequency dispersion of non-hydrostatic water waves is explained using a small-amplitude wave. The cnoidal wave theory for finite-amplitude long waves is also discussed. The solitary wave theory is used to investigate the effect of linear and parabolic approximations for the vertical pressure distribution. Non-hydrostatic dam break waves over a rigid and horizontal bed are used to introduce the need of numerical models; a simple finite-difference scheme is employed to illustrate the behavior of these waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In most books on fluid mechanics, ϕ and \( \psi \) are defined with the opposite signs.

  2. 2.

    In the processes of the above computations, expressions of the form (1 + a)n arise, which are approximated as (1 + na) on the basis that |a| ≪ 1. Another approximation typically used is exp(a) = 1 + a. This is used frequently without explicitly mentioning it.

  3. 3.

    The expansion ln(1 − a) = −a − a 2/2 − a 3/3 − … ≈ − a(1 + a/2) is used on the basis that |a| ≪ 1.

  4. 4.

    Nappe is a French word used by hydraulic engineers to define the free surface of a jet. Therefore, the free jet is defined by the upper and lower nappe profiles [z s  = z s (x) and z b  = z b (x), respectively].

  5. 5.

    From Appendix E and for flat channels, the approximate integration of the Euler equations along the equipotential lines (Hager and Hutter 1984a) agrees with the first Picard iteration cycle (Matthew 1991).

  6. 6.

    In weir flow, R b is negative (convex bottom profile), resulting in m < 0. In the original developments presented by Jaeger (1939) and Montes (1970), R b is to be used in absolute value, given that a negative sign was introduced into the governing equations. Therefore, m = +2 is the value used in these works.

  7. 7.

    If the phase speed c depends on the wave number k, the corresponding wave is called dispersive.

  8. 8.

    Note, on comparing Eq. (3.664)2 with (3.670)2, the negative sign on the right-hand side of Eq. (3.668).

Abbreviations

a :

Gate opening (m); also wave amplitude (m/s)

A :

Angular momentum function (m3); wave amplitude (m)

A, B, C, D :

Auxiliary variables

B :

Boussinesq’s mixed term (m4/s2)

c :

Wave celerity (m/s); also constant of integration (m)

c o :

Celerity of small gravity wave (m/s)

c w :

Celerity of shock front (m/s)

C d :

Weir discharge coefficient (–)

C D :

Spillway discharge coefficient at design head (–)

C c :

Contraction coefficient (–)

CFL :

Courant–Friedrichs–Lewy number (–)

d :

Still water depth (m)

D :

Constant of integration (–)

E :

Specific energy head (m)

f :

Function (m)

F :

Vector of fluxes in the x-direction (m2/s, m3/s2)

F :

Froude number (–)

F o :

Froude number of hydrostatic flow (–); also Froude number of undisturbed flow (–)

F p :

Froude number of translating wave over still water (–)

F :

Force (N)

g :

Gravity acceleration (m/s2); also function (m/s)

G :

Recursion index (–)

h :

Flow depth measured vertically (m)

h c :

Critical depth for parallel-streamlined flow (m) = (q 2/g)1/3

h b :

Brink depth (m)

h o :

Uniform flow depth (m); also still water depth (m); also terminal jet thickness (m)

h p :

Effective pressure head (m)

h 1 :

Maximum flow depth of cnoidal wave (m)

h 2 :

Minimum flow depth of cnoidal wave (m)

h 3 :

q 2/(gh 1 h 2) (m)

h max :

Maximum flow depth of solitary wave (m)

H :

Total energy head (m)

H D :

Design energy head of spillway profile (m)

i :

Relative inclination (–); also node index in the x-direction (–)

j :

Node index in the ψ-direction (–)

k :

Recursion index (–); also wave number (m−1)

k 2 :

Modulus of incomplete elliptical integral of first kind (–)

K, K b , K G :

Curvature distribution parameters in Fawer’s theory (–)

m :

Inclination distribution parameter (–); pressure parameter (–); also parameter of the original Jaeger’s theory (–)

m o :

Radius of curvature distribution parameter in Jaeger’s theory (–)

m 1 :

Power-law exponent at inflow section (–)

M :

Vertical momentum (m3); also maximum value of j-index (–), also momentum function (m4/s2)

n :

Curvilinear coordinate along equipotential (m)

N :

Flow depth measured normal to bottom profile (m); also maximum value of j-index (–); also power-law exponent (–)

N o :

Length of equipotential curve (m)

p :

Pressure (N/m2); also auxiliary variable (–)

p b :

Bottom pressure (N/m2)

p s :

Interface pressure (N/m2)

p 1 :

Pressure excess over hydrostatic pressure at channel bottom (N/m2)

p be :

Bottom pressure at brink section of free overfall (N/m2)

q :

Unit discharge (m2/s)

q o :

Normalized unit discharge in slope break with rounded transition (–)

q p :

Progressive unit discharge (m2/s)

r :

Relative curvature (–); ratio of down- to upstream water depths in dam break problem (–); also roller thickness (m)

R :

Radius of streamline curvature (m)

R * :

Radius of circular-shaped equipotential line (m)

R s :

Radius of free surface (m)

R b :

Radius of channel bottom (m); also radius of circular arc transition (m)

s :

Curvilinear coordinate along streamline (m); also main stream profile of submerged jet (m)

S :

Specific momentum (m2)

S o :

Bottom slope (–)

t :

Vertical flow depth (m); also time (s)

u :

Velocity in the x-direction (m/s); also normalized variable (–); also incomplete elliptical integral of first kind (–)

u ξ :

Velocity in the ξ-direction (m/s)

u α :

Velocity at elevation z α (m/s)

U :

Mean flow velocity (m/s) = q/h

U o :

Amplitude of perturbation of flow velocity (m/s)

U :

Vector of conserved variables (m, m/s)

U c :

Mean critical flow velocity (m/s) = q/h c

V :

Local velocity (m/s)

w :

Velocity in the z-direction (m/s)

w e :

Velocity in the z-direction at gate edge (m/s)

w ζ :

Velocity in the ζ-direction (m/s)

x :

Horizontal coordinate (m)

X :

X/h c (–); also longitudinal coordinate in moving system of reference (m); also x/H D (–)

\( \overline{X} \) :

Modified X-coordinate of sharp-crested weir flow (–)

y :

H/h max (–); also coordinate in the horizontal plane, normal to x (m)

Y :

H/h c (–); also (y − 1)/(F 2 p  − 1) (–)

z :

Vertical elevation (m)

z s :

Free surface elevation (m)

z b :

Elevation of channel bottom (m)

z α :

Reference elevation (m)

Z :

Recursion index (–); also normalized variable (–); also z b /H D (–)

\( \overline{Z} \) :

Modified Z-coordinate of sharp-crested weir flow (–)

α :

Dispersion coefficient (–)

α N :

Nwogu-type dispersion coefficient (–)

α 1, α 2, α 3, α 4 :

Coefficients

β 1, β 2, β 3, β 4 :

Coefficients

Γ:

Incomplete gamma function (–)

γ :

Specific weight of water (N/m3)

Δ:

Step in the x-direction (m); also factor in cnoidal wave theory (–)

ε :

Lower nappe maximum elevation (m)

ε 1, ε 2 :

Curvilinear coefficients (–)

ζ :

Coordinate normal to channel bottom profile, normal to ξ (m); also water depth variation around static level (m); also normalized x-coordinate in solitary wave profile (–)

η :

Vertical coordinate above channel bottom (m)

θ :

Angle of streamline inclination with horizontal (rad)

κ :

Curvature of streamline (m−1); also denoted as κ s

κ b :

Curvature of bottom profile (m−1)

κ n :

Curvature of equipotential curve (m−1)

Λ :

Vorticity factor (–)

λ :

Non-hydrostatic correction coefficient in critical flow condition (–); also wavelength (m)

μ :

Dimensionless vertical coordinate (–)

ν :

Dimensionless curvilinear coordinate along equipotential line (–); also kinematic viscosity (m2/s)

ξ :

Curvilinear coordinate measured along bottom profile (m); also normalized x-coordinate in solitary wave profile (–)

П:

Function (m)

ρ :

Density of water (kg/m3)

τ :

R/R s (–)

ϕ :

Potential function (m2/s)

Φ1, Φ2 :

Functions of water surface profile equation (–)

φ :

Non-hydrostatic correction coefficient (–)

χ :

E/H D (–); also curvature parameter (–); also normalized x-coordinate in free jet profile (–); also parameter of cnoidal wave (–)

ψ :

Stream function (m2/s)

Ω:

Effective angular momentum function (m3); also curvilinear function (–); also vorticity (s−1); also normalized variable (–)

ω :

Constant in solitary wave profile (–); also recursion index (–); also normalized variable (–); also frequency (s−1)

b :

Relative to channel bottom

c :

Critical flow

crest:

Relative to crest section

d :

Relative to downstream boundary condition

o :

Relative to approach flow conditions

s :

Relative to free surface

u :

Relative to upstream boundary condition

*:

Relative to dimensionless value; also relative to star region in Riemann problem

References

  • Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables (10th ed.). New York: Wiley.

    Google Scholar 

  • Ali, K. H. M., & Sykes, A. (1972). Free-vortex theory applied to free overfall. Journal of the Hydraulics Division ASCE, 98(HY5), 973–979.

    Google Scholar 

  • Anh, T., & Hosoda, T. (2007). Depth-averaged model of open-channel flows over an arbitrary 3D surface and its applications to analysis of water surface profile. Journal of Hydraulic Engineering, 133(4), 350–360.

    Article  Google Scholar 

  • Bakhmeteff, B. A. (1932). Discussion of Tests of broad crested weirs. Transactions of the ASCE, 96, 423–434.

    Google Scholar 

  • Barthelemy, E. (2004). Nonlinear shallow water theories for coastal waters. Surveys In Geophysics, 25(3), 315–337.

    Article  Google Scholar 

  • Basco, D. R. (1983). Computation of rapidly varied, unsteady free surface flow. Water Resources Investigation Report 83-4284. Reston, VA: US Geological Survey.

    Google Scholar 

  • Bazin, H. (1888). Expériences nouvelles sur l’écoulement en déversoir (Novel experiments on weir flow). Annales des Ponts et Chaussées, 58, 393–488 (in French).

    Google Scholar 

  • Benjamin, T. B. (1956). On the flow in channels when rigid obstacles are placed in the stream. Journal of Fluid Mechanics, 1, 227–248.

    Article  Google Scholar 

  • Benjamin, T. B., & Lighthill, M. J. (1954). On cnoidal waves and bores. Proceedings of the Royal Society of London, 224, 448–460.

    Article  Google Scholar 

  • Biggiero, V. (1964). Vene libere allo sbocco di canale (Free surfaces at channel brink). Fondazione Politecnica per il Mezzogiorno d’Italia 3, 63p (in Italian).

    Google Scholar 

  • Blau, E. (1963). Der Abfluss und die hydraulische Energieverteilung über einer parabelförmigem Wehrschwelle (Flow and the hydraulic energy distribution over a parabolic weir). Mitteilung, 7, 5–72. Forschungsanstalt für Schiffahrt, Wasser und Grundbau, Berlin (in German).

    Google Scholar 

  • Boadway, J. D. (1976). Transformation of elliptic partial differential equations for solving two dimensional boundary value problems in fluid flow. International Journal for Numerical Methods in Engineering, 10(3), 527–533.

    Article  Google Scholar 

  • Bonneton, P., Barthelemy, E., Chazel, F., Cienfuegos, R., Lannes, D., Marche, F., et al. (2011). Recent advances in Serre-Green-Naghdi modelling for wave transformation, breaking and runup processes. European Journal of Mechanics B/Fluids, 30(6), 589–597.

    Article  Google Scholar 

  • Bos, M. G. (1976). Discharge measurement structures. Publication, 20. Wageningen, NL: Intl. Inst. for Land Reclamation (ILRI).

    Google Scholar 

  • Bose, S. K., & Dey, S. (2007). Curvilinear flow profiles based on Reynolds averaging. Journal of Hydraulic Engineering, 133(9), 1074–1079.

    Article  Google Scholar 

  • Bose, S. K., & Dey, S. (2009). Reynolds averaged theory of turbulent shear flows over undulating beds and formation of sand waves. Physical Review E, 80(3), 036304-1/036304-9.

    Google Scholar 

  • Boussinesq, J. (1872). Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond (Theory of waves and disturbances propagating along a rectangular horizontal channel, generating nearly uniform velocities from the surface to the bottom). J. Mathématiques Pures et Appliqués, Série, 2(17), 55–108 (in French).

    Google Scholar 

  • Boussinesq, J. (1877). Essai sur la théorie des eaux courantes (Memoir on the theory of flowing water). Mémoires présentés par divers savants à l’Académie des Sciences, Paris, 23(1), 1–660; 24(2), 1-60 (in French).

    Google Scholar 

  • Cantero-Chinchilla, F. N., Castro-Orgaz, O., Dey, S., & Ayuso, J. L. (2016). Nonhydrostatic dam break flows I: Physical equations and numerical schemes. Journal of Hydraulic Engineering, 142(12), 04016068.

    Google Scholar 

  • Carter, J. D., & Cienfuegos, R. (2011). The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations. European Journal of Mechanics B/Fluids, 30(3), 259–268.

    Article  Google Scholar 

  • Cassidy, J. J. (1965). Irrotational flow over spillways of finite height. Journal of the Engineering Mechanics Division ASCE, 91(EM6), 155–173.

    Google Scholar 

  • Cassidy, J. J. (1970). Designing spillway crests for high head operation. Journal of the Engineering Mechanics Division ASCE, 96(3), 745–753.

    Google Scholar 

  • Castro-Orgaz, O. (2008). Curvilinear flow over round-crested weirs. Journal of Hydraulic Research, 46(4), 543–547.

    Article  Google Scholar 

  • Castro-Orgaz, O. (2009). Hydraulics of developing chute flow. Journal of Hydraulic Research, 47(2), 185–194.

    Article  Google Scholar 

  • Castro-Orgaz, O. (2010a). Approximate modeling of 2D curvilinear open channel flows. Journal of Hydraulic Research, 48(2), 213–224.

    Article  Google Scholar 

  • Castro-Orgaz, O. (2010b). Equations for plane, highly-curved open channels flows. Journal of Hydraulic Research, 48(3), 405–408.

    Article  Google Scholar 

  • Castro-Orgaz, O. (2010c). Steady open channel flows with curved streamlines: The Fawer approach revised. Environmental Fluid Mechanics, 10(3), 297–310.

    Article  Google Scholar 

  • Castro-Orgaz, O. (2013a). Potential flow solution for open channel flows and weir-crest overflow. Journal of Irrigation and Drainage Engineering, 139(7), 551–559.

    Article  Google Scholar 

  • Castro-Orgaz, O. (2013b). Iterative solution for ideal fluid jets. Journal of Hydraulic Engineering, 139(8), 905–910.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Chanson, H. (2009). Bernoulli theorem, minimum specific energy and water wave celerity in open channel flow. Journal of Irrigation and Drainage Engineering, 135(6), 773–778.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Chanson, H. (2014). Depth-averaged specific energy in open channel flow and analytical solution for critical irrotational flow over weirs. Journal of Irrigation and Drainage Engineering, 140(1), 04013006.

    Article  Google Scholar 

  • Castro-Orgaz, O., Giraldez, J. V., & Ayuso, J. L. (2008a). Critical flow over spillway profiles. Journal of Water Management ICE, 161(2), 89–95.

    Google Scholar 

  • Castro-Orgaz, O., Giraldez, J. V., & Ayuso, J. L. (2008b). Critical flow over circular crested weirs. Journal of Hydraulic Engineering, 134(11), 1661–1664.

    Article  Google Scholar 

  • Castro-Orgaz, O., Giraldez, J. V., & Ayuso, J. L. (2008c). Higher order critical flow condition in curved streamline flow. Journal of Hydraulic Research, 46(6), 849–853.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2009). Curved streamline transitional flow from mild to steep slopes. Journal of Hydraulic Research, 47(5), 574–584.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2010). Moment of momentum equation for curvilinear free-surface flow. Journal of Hydraulic Research, 48(5), 620–631.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2011). Vorticity equation for the streamline and the velocity profile. Journal of Hydraulic Research, 49(6), 775–783.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2013). Velocity profile approximations for two-dimensional potential channel flow. Journal of Hydraulic Research, 51(6), 645–655.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2014a). 1D modelling of curvilinear free surface flow: Generalized Matthew theory. Journal of Hydraulic Research, 52(1), 14–23.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2014b). Scale effects of round-crested weir flow. Journal of Hydraulic Research, 52(5), 653–665.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2014c). Transitional flow at standard sluice gate. Journal of Hydraulic Research, 52(2), 264–273.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2016). Dressler’s theory for curved topography flows: Iterative derivation, transcritical flow solutions and higher-order wave-type equations. Environmental Fluid Mechanics, 16(2), 289–311.

    Article  Google Scholar 

  • Chanson, H. (2006). Minimum specific energy and critical flow conditions in open channels. Journal of Irrigation and Drainage Engineering, 132(5), 498–502.

    Article  Google Scholar 

  • Chanson, H., & Montes, J. S. (1998). Overflow characteristics of circular weirs: Effects of inflow conditions. Journal of Irrigation and Drainage Engineering, 124(3), 152–162.

    Article  Google Scholar 

  • Chaudhry, M. H. (2008). Open-channel flow (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Chen, J., & Dracos, T. (1996). Water surface slope at critical controls in open channel flow. Journal of Hydraulic Research, 34(4), 517–536.

    Article  Google Scholar 

  • Cheng, A. H.-D., Liggett, J. A., & Liu, P. L.-F. (1981). Boundary calculations of sluice and spillway flows. Journal of the Hydraulics Division ASCE, 107(HY10), 1163–1178.

    Google Scholar 

  • Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  • Cienfuegos, R., Barthélemy, E., & Bonneton, P. (2006). A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: Model development and analysis. International Journal for Numerical Methods in Fluids, 51(11), 1217–1253.

    Google Scholar 

  • Creager, W. P. (1917). Engineering for masonry dams. New York: Wiley.

    Book  Google Scholar 

  • D’Alpaos, L. (1986). Effetti scala nei moti di efflusso fortemente accelerate (Scale effects in highly-accelerated outflows) (pp. 15–23). In 20th Italian Congress of Hydraulics and Hydraulic Structures Padova (in Italian).

    Google Scholar 

  • Da Vinci, L. (1828). Del moto e misura dell’ acqua (On water flow and discharge measurement). Bologna, Italy (in Italian).

    Google Scholar 

  • Dao-Yang, D., & Man-Ling, L. (1979). Mathematical model of flow over a spillway dam. In Proceedings of 13th International Congress of Large Dams New Delhi Q50(R55) (pp. 959–976).

    Google Scholar 

  • De Almeida, A. B., & Franco, A. B. (1994). Modeling of dam-break flow. In Computer modeling of free-surface and pressurized flows (pp. 343–373). Berlin: Springer.

    Google Scholar 

  • de Saint-Venant, A. B. (1871). Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marrées dans leur lit (Theory of unsteady water movement, applied to floods in rivers and the effect of tidal flows). Comptes Rendus de l’Académie des Sciences, 73, 147–154; 73, 237–240 (in French).

    Google Scholar 

  • Denlinger, R. P., & O’Connell, D. R. H. (2008). Computing nonhydrostatic shallow-water flow over steep terrain. Journal of Hydraulic Engineering, 134(11), 1590–1602.

    Article  Google Scholar 

  • Dey, S. (2002). Free overfall in open channels: State-of-the-art review. Flow Measurement and Instrumentation, 13(5–6), 247–264.

    Article  Google Scholar 

  • Dias, F., & Milewski, P. (2010). On the fully non-linear shallow-water generalized Serre equations. Physics Letters A, 374(8), 1049–1053.

    Article  Google Scholar 

  • Dingemans, M. W. (1994). Water wave propagation over uneven bottoms. PhD Dissertation, Technical University of Delft, Delft, the Netherlands.

    Google Scholar 

  • Dressler, R. F. (1978). New nonlinear shallow flow equations with curvature. Journal of Hydraulic Research, 16(3), 205–222.

    Article  Google Scholar 

  • Dressler, R. F., & Yevjevich, V. (1984). Hydraulic-resistance terms modified for the Dressler curved-flow equations. Journal of Hydraulic Research, 22(3), 145–156.

    Article  Google Scholar 

  • Escande, L. (1933). Détermination pratique du profile optimum d’un barrage déversoir: Tracé des piles par les méthodes aérodynamiques. Application à un ouvrage déterminé (Practical determination of the optimum weir profile: Pier shape using aerodynamic methods, application to prototype structure). Science et Industrie, 17(9), 467–474 (in French).

    Google Scholar 

  • Fangmeier, D. D., & Strelkoff, T. S. (1968). Solution for gravity flow under a sluice gate. Journal of the Engineering Mechanics Division ASCE, 94(EM1), 153–176.

    Google Scholar 

  • Favre, H. (1935). Étude théorique et expérimentale des ondes de translation dans les canaux découverts (Theoretical and experimental study of translation waves in open channels). Dunod, Paris (in French).

    Google Scholar 

  • Fawer, C. (1937). Etude de quelques écoulements permanents à filets courbes (Study of some steady flows with curved streamlines). Thesis. Université de Lausanne. La Concorde, Lausanne, Switzerland (in French).

    Google Scholar 

  • Fenton, J. D. (1996). Channel flow over curved boundaries and a new hydraulic theory. In Proceedings 10th IAHR APD Congress Langkawi, Malaysia (pp. 266–273).

    Google Scholar 

  • Friedrichs, K. O. (1948). On the derivation of the shallow water theory. Communications on Pure and Applied Mathematics, 1(1), 81–87.

    Google Scholar 

  • Ganguli, M. K., & Roy, S. K. (1952). On the standardisation of the relaxation treatment of systematic pressure computations for overflow spillway discharge. Irrigation and Power, 9(2), 187–204.

    Google Scholar 

  • Green, A. E., & Naghdi, P. M. (1976a). Directed fluid sheets. Proceedings of the Royal Society of London A, 347, 447–473.

    Article  Google Scholar 

  • Green, A. E., & Naghdi, P. M. (1976b). A derivation of equations for wave propagation in water of variable depth. Journal of Fluid Mechanics, 78, 237–246.

    Article  Google Scholar 

  • Guo, Y., Wen, X., Wu, C., & Fang, D. (1998). Numerical modelling of spillway flow with free drop and initially unknown discharge. Journal of Hydraulic Research, 36(5), 785–801.

    Article  Google Scholar 

  • Hager, W. H. (1983). Hydraulics of the plane free overfall. Journal of Hydraulic Engineering, 109(12), 1683–1697.

    Article  Google Scholar 

  • Hager, W. H. (1985a). Equations for plane, moderately curved open channel flows. Journal of Hydraulic Engineering, 111(3), 541–546.

    Article  Google Scholar 

  • Hager, W. H. (1985b). Critical flow condition in open channel hydraulics. Acta Mechanica, 54(3–4), 157–179.

    Article  Google Scholar 

  • Hager, W. H. (1987). Continuous crest profile for standard spillway. Journal of Hydraulic Engineering, 113(11), 1453–1457.

    Article  Google Scholar 

  • Hager, W. H. (1991). Experiments on standard spillway flow. Proceedings of the ICE, 91(2), 399–416.

    Google Scholar 

  • Hager, W. H. (1993). Abfluss über Zylinderwehr (Flow over cylindrical weirs). Wasser und Boden, 44(1), 9–14 (in German).

    Google Scholar 

  • Hager, W. H. (1999a). Wastewater hydraulics: Theory and practice (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Hager, W. H. (1999b). Cavity flow from a nearly horizontal pipe. International Journal of Multiphase Flow, 25(2), 349–364.

    Article  Google Scholar 

  • Hager, W. H. (2010). Comment on Steady open channel flow with curved streamlines: The Fawer approach revised. Environmental Fluid Mechanics, 10(4), 491–494.

    Article  Google Scholar 

  • Hager, W. H., & Hutter, K. (1984a). Approximate treatment of plane channel flow. Acta Mechanica, 51(3–4), 31–48.

    Article  Google Scholar 

  • Hager, W. H., & Hutter, K. (1984b). On pseudo-uniform flow in open channel hydraulics. Acta Mechanica, 53(3–4), 183–200.

    Article  Google Scholar 

  • Hager, W. H., & Schleiss, A. (2009). Constructions hydrauliques: Ecoulements stationnaires (Hydraulic structures: Steady flows). Traité de Génie Civil 15. Presses Polytechniques Universitaires Romandes, Lausanne (in French).

    Google Scholar 

  • Hasumi, M. (1931). Untersuchungen über die Verteilung der hydrostatischen Drücke an Wehrkronen und -Rücken von Überfallwehren infolge des abstürzenden Wassers (Studies on the distribution of hydrostatic pressure distributions at overflows due to water flow). J. Dept. Agriculture, 3(4), 1–97 (Kyushu Imperial University) (in German).

    Google Scholar 

  • Hay, N., & Markland, E. (1958). The determination of the discharge over weirs by the electrolytic tank. Proceedings of the Institution of Civil Engineersm, 10(1), 59–86; 11(3), 381–382.

    Google Scholar 

  • Heidarpour, M., & Chamani, M. R. (2006). Velocity distribution over cylindrical weirs. Journal of Hydraulic Research, 44(5), 708–711.

    Article  Google Scholar 

  • Henderson, F. M. (1966). Open channel flow. New York: MacMillan.

    Google Scholar 

  • Hutter, K., & Wang, Y. (2016). Fluid and thermodynamics 1: Basic fluid mechanics. Series Advances in Geophysical and Environmental Mechanics and Mathematics. Berlin: Springer.

    Google Scholar 

  • Ishihara, T., Iwasa, Y., & Ihda, K. (1960). Basic studies on hydraulic performances of overflow spillways and diversion weirs. Bulletin of the Disaster Prevention Research Institute, 33, 1–30.

    Article  Google Scholar 

  • Iwasa, Y. (1955). Undular jump and its limiting conditions for existence. Proceedings of the Japan National Congress for Applied Mechanics, II-14, 315–319.

    Google Scholar 

  • Iwasa, Y. (1956). Analytical considerations on cnoidal and solitary waves. Memoires Faculty of Engineering, Kyoto University, 17(4), 264–276.

    Google Scholar 

  • Iwasa, Y. (1958). Hydraulic significance of transitional behaviours of flows in channel transitions and controls. Memoires Faculty of Engineering, Kyoto University, 20(4), 237–276.

    Google Scholar 

  • Iwasa, Y., & Kennedy, J. F. (1968). Free surface shear flow over a wavy bed. Journal of the Hydraulics Division ASCE, 94(2), 431–454.

    Google Scholar 

  • Jaeger, C. (1939). Remarques sur quelques écoulements le long des lits à pente variant graduellement (Remarks on some flows along bottoms of gradually varied slope). Schweizerische Bauzeitung, 114(20), 231–234 (in French).

    Google Scholar 

  • Jaeger, C. (1948). Hauteur d’eau à l’extrémité d’un long déversoir (Flow depth at the extremity of a long weir). La Houille Blanche, 3(6), 518–523 (in French).

    Article  Google Scholar 

  • Jaeger, C. (1956). Engineering fluid mechanics. Edinburgh: Blackie and Son.

    Google Scholar 

  • Jaeger, C. (1966). Discussion of Calculation of flow at a free overfall by relaxation method. Proceedings of the ICE, 34(2), 285–286.

    Google Scholar 

  • Keulegan, G. H., & Patterson, G. W. (1940). Mathematical theory of irrotational translation waves. Journal of Research of the National Bureau of Standards, 24(1), 47–101.

    Article  Google Scholar 

  • Keutner, C. (1935). Die Strömungsvorgänge an unterströmten Schützentafeln mit scharfen und abgerundeten Unterkanten (The flow features at gates with sharp and rounded crests). Wasserkraft und Wasserwirtschaft, 30(2), 16–21 (in German).

    Google Scholar 

  • Khafagi, A., & Hammad, S. Z. (1954a). Velocity and pressure distributions in curved streamline flow. Water and Water Engineering, 57(3), 106–115.

    Google Scholar 

  • Khafagi, A., & Hammad, S. Z. (1954b). The critical depth, the critical velocity and the Froude number as functions of the non-uniform flow. Water and Water Engineering, 57(10), 436–445.

    Google Scholar 

  • Khafagi, A., & Hammad, S. Z. (1956). The curvilinear flow in open channels. Bulletin, 3, 71–104 (Faculty of Engineering, Cairo University).

    Google Scholar 

  • Khan, A. A., & Steffler, P. M. (1995). Discussion of Potential flow solution to the 2D transition form mild to steep slope. Journal of Hydraulic Engineering, 121(9), 680–681.

    Article  Google Scholar 

  • Khan, A. A., & Steffler, P. M. (1996a). Vertically averaged and moment equations model for flow over curved beds. Journal of Hydraulic Engineering, 122(1), 3–9.

    Article  Google Scholar 

  • Khan, A. A., & Steffler, P. M. (1996b). Modelling overfalls using vertically averaged and moment equations. Journal of Hydraulic Engineering, 122(7), 397–402.

    Article  Google Scholar 

  • Kim, D.-H., & Lynett, P. J. (2011). Dispersive and nonhydrostatic pressure effects at the front of surge. Journal of Hydraulic Engineering, 137(7), 754–765.

    Article  Google Scholar 

  • Knapp, F. H. (1960). Ausfluss, Überfall und Durchfluss im Wasserbau (Outflow, overflow and through-flow in hydraulic engineering). Karlsruhe, Braun (in German).

    Google Scholar 

  • Korteweg, D. J., & de Vries, G. (1895). On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine, 39, 422–443.

    Article  Google Scholar 

  • Lenau, C. W. (1967). Potential flow over spillways at low heads. Journal of the Engineering Mechanics Division ASCE, 93(3), 95–107.

    Google Scholar 

  • Liggett, J. A. (1993). Critical depth, velocity profile and averaging. Journal of Irrigation and Drainage Engineering, 119(2), 416–422.

    Article  Google Scholar 

  • Liggett, J. A. (1994). Fluid mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Mandrup Andersen, V. (1967). Non-uniform flow in front of a free overfall. Acta Polytechnica Scandinavica, 42, 1–24.

    Google Scholar 

  • Mandrup Andersen, V. (1975). Transition from subcritical to supercritical flow. Journal of Hydraulic Research, 13(3), 227–238.

    Article  Google Scholar 

  • Marchi, E. (1992). The nappe profile of a free overfall. Rendiconti Lincei Matematica e Applicazioni Serie 9, 3(2), 131–140.

    Google Scholar 

  • Marchi, E. (1993). On the free overfall. Journal of Hydraulic Research, 31(6), 777–790; 32(5), 794–796.

    Google Scholar 

  • Markland, E. (1965). Calculation of flow at a free overfall by relaxation method. Proceedings of the ICE, 31, Paper 686, 71–78.

    Google Scholar 

  • Massé, P. (1938). Ressaut et ligne d´eau dans les cours à pente variable (Hydraulic jump and free surface profile in channels of variable bottom slope). Revue Générale de l’Hydraulique, 4(19), 7–11; 4(20), 61–64 (in French).

    Google Scholar 

  • Matthew, G. D. (1963). On the influence of curvature, surface tension and viscosity on flow over round-crested weirs. Proceedings of the ICE, 25, 511–524; 28, 557–569.

    Google Scholar 

  • Matthew, G. D. (1991). Higher order one-dimensional equations of potential flow in open channels. Proceedings of the ICE, 91(3), 187–201.

    Google Scholar 

  • Matthew, G. D. (1995). Discussion of A potential flow solution for the free overfall. Proceedings of the ICE, 112(1), 81–85.

    Google Scholar 

  • Mei, C. C. (1983). The applied dynamics of ocean surface waves. New York: Wiley.

    Google Scholar 

  • Milne-Thomson, L. M. (1962). Theoretical hydrodynamics. London: Macmillan.

    Google Scholar 

  • Mohapatra, P. K., & Chaudhry, M. H. (2004). Numerical solution of Boussinesq equations to simulate dam-break flows. Journal of Hydraulic Engineering, 130(2), 156–159.

    Article  Google Scholar 

  • Mohapatra, P. K., Eswaran, V., & Murthy Bhallamudi, S. (1999). Two-dimensional analysis of dam-break flow in a vertical plane. Journal of Hydraulic Engineering, 125(2), 183–192.

    Article  Google Scholar 

  • Montes, J. S. (1970). Flow over round crested weirs. L´Energia Elettrica, 47(3), 155–164.

    Google Scholar 

  • Montes, J.S. (1986). A study of the undular jump profile. In Proceedings of the 9th Australasian Fluid Mechanics Conference, Auckland (pp. 148–151).

    Google Scholar 

  • Montes, J. S. (1992a). A potential flow solution for the free overfall. Proceedings of the ICE, 96(6), 259–266; 112(1), 85–87.

    Google Scholar 

  • Montes, J. S. (1992b). Potential flow analysis of flow over a curved broad crested weir. In Proceedings of the 11th Australasian Fluid Mechanics Conference, Auckland (pp. 1293–1296).

    Google Scholar 

  • Montes, J. S. (1994a). Potential flow solution to the 2D transition form mild to steep slope. Journal of Hydraulic Engineering, 120(5), 601–621.

    Article  Google Scholar 

  • Montes, J. S. (1994b). Discussion of on the free overfall. Journal of Hydraulic Research, 32(5), 792–794.

    Article  Google Scholar 

  • Montes, J. S. (1995). Closure to Potential flow solution to the 2D transition from mild to steep slope. Journal of Hydraulic Engineering, 121(9), 681–682.

    Article  Google Scholar 

  • Montes, J. S. (1997). Irrotational flow and real fluid effects under planar sluice gates. Journal of Hydraulic Engineering, 123(3), 219–232.

    Article  Google Scholar 

  • Montes, J. S. (1998). Hydraulics of open channel flow. Reston, VA: ASCE Press.

    Google Scholar 

  • Montes, J. S., & Chanson, H. (1998). Characteristics of undular hydraulic jumps: Experiments and analysis. Journal of Hydraulic Engineering, 124(2), 192–205.

    Article  Google Scholar 

  • Naghdi, P. M. (1979). Fluid jets and fluid sheets: A direct formulation. In Proceedings of the 12th Symposium Naval Hydrodynamics (pp. 505–515). Washington, D.C.: National Academy of Sciences.

    Google Scholar 

  • Naghdi, P. M., & Vongsarnpigoon, L. (1986). The downstream flow beyond an obstacle. Journal of Fluid Mechanics, 162, 223–236.

    Article  Google Scholar 

  • Nakagawa, H. (1969). Flow behaviours near the brink of free overfall. Bulletin of the Disaster Prevention Research Institute, 18(4), 66–76.

    Google Scholar 

  • Nwogu, O. (1993). Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway Port Coastal and Ocean Engineering, 119(6), 618–638.

    Google Scholar 

  • Ohtsu, I., & Yasuda, Y. (1994). Characteristics of supercritical flow below sluice gate. Journal of Hydraulic Engineering, 120(3), 332–346.

    Article  Google Scholar 

  • Peregrine, D. H. (1966). Calculations of the development of an undular bore. Journal of Fluid Mechanics, 25(2), 321–330.

    Article  Google Scholar 

  • Peregrine, D. H. (1967). Long waves on a beach. Journal of Fluid Mechanics, 27(5), 815–827.

    Article  Google Scholar 

  • Peregrine, D. H. (1972). Equations for water waves and the approximations behind them. In R. E. Meyer (Ed.), Waves on beaches and resulting sediment transport (pp. 95–122). San Diego, CA: Academic Press.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rajaratnam, N., & Humphries, J. A. (1982). Free flow upstream of vertical sluice gates. Journal of Hydraulic Research, 20(5), 427–436.

    Article  Google Scholar 

  • Ramamurthy, A. S., & Vo, N. D. (1993a). Application of Dressler theory to weir flow. Journal of Applied Mechanics, 60(1), 163–166.

    Article  Google Scholar 

  • Ramamurthy, A. S., & Vo, N. D. (1993b). Characteristics of circular-crested weirs. Journal of Hydraulic Engineering, 119(9), 1055–1062.

    Article  Google Scholar 

  • Ramamurthy, A. S., Vo, N. D., & Balachandar, R. (1994). A note on irrotational curvilinear flow past a weir. Journal of Fluids Engineering, 116(2), 378–381.

    Article  Google Scholar 

  • Ramamurthy, A. S., Vo, N. D., & Vera, G. (1992). Momentum model of flow past a weir. Journal of Irrigation and Drainage Engineering, 118(6), 988–994.

    Article  Google Scholar 

  • Rayleigh, L. (1876). On waves. Philosophical Magazine and Journal of Science Series 5, 1, 257–279.

    Google Scholar 

  • Replogle, J. A. (1962). Discussion of End depth at drop in trapezoidal channel. Journal of the Hydraulics Division ASCE, 88(2), 161–165.

    Google Scholar 

  • Roth, A., & Hager, W. H. (1999). Underflow of standard sluice gate. Experiments in Fluids, 27(4), 339–350.

    Article  Google Scholar 

  • Rouse, H. (1932). The distribution of hydraulic energy in weir flow in relation to spillway design. MS Thesis. MIT, Boston, MA.

    Google Scholar 

  • Rouse, H. (1933). Verteilung der hydraulischen Energie bei einem lotrechten Absturz (Distribution of hydraulic energy at a vertical drop). PhD Dissertation. TU Karlsruhe, Karlsruhe (in German).

    Google Scholar 

  • Rouse, H. (1938). Fluid mechanics for hydraulic engineers. New York: McGraw-Hill.

    Google Scholar 

  • Rouse, H. (1950). Engineering hydraulics. New York: Wiley.

    Google Scholar 

  • Rouse, H. (1959). Advanced mechanics of fluids. New York: Wiley.

    Google Scholar 

  • Rouse, H. (1970). Work-energy equation for the streamline. Journal of the Hydraulics Division ASCE, 96(HY5), 1179–1190.

    Google Scholar 

  • Rouse, H., & Ince, S. (1957). History of hydraulics. New York: Dover Publications.

    Google Scholar 

  • Russell, J. S. (1837). Report of the Committee on Waves. British reports VI, 417–468, plus plates 1–8.

    Google Scholar 

  • Sander, J., & Hutter, K. (1991). On the development of the theory of the solitary wave: A historical essay. Acta Mechanica, 86(1), 111–152.

    Article  Google Scholar 

  • Schmocker, L., Halldórsdóttir, B., & Hager, W. H. (2011). Effect of weir face angles on circular-crested weir flow. Journal of Hydraulic Engineering, 137(6), 637–643.

    Article  Google Scholar 

  • Scimemi, E. (1930). Sulla forma delle vene tracimanti (On the form of overflow jets). L’Energia Elettrica, 7(4), 293–305 (in Italian).

    Google Scholar 

  • Serre, F. (1953). Contribution à l’étude des écoulements permanents et variables dans les canaux (Contribution to the study of steady and unsteady channel flows). La Houille Blanche, 8(6-7), 374–388; 8(12), 830–887 (in French).

    Google Scholar 

  • Sivakumaran, N. S. (1981). Shallow flow over curved beds. PhD thesis. Asian Institute of Technology, Bangkok, Thailand.

    Google Scholar 

  • Sivakumaran, N. S., & Dressler, R. F. (1986). Distribution of resistive body-force in curved free-surface flow. Mathematical Methods in the Applied Sciences, 8(4), 492–501.

    Article  Google Scholar 

  • Sivakumaran, N. S., Hosking, R. J., & Tingsanchali, T. (1981). Steady shallow flow over a spillway. Journal of Fluid Mechanics, 111, 411–420.

    Article  Google Scholar 

  • Sivakumaran, N. S., Tingsanchali, T., & Hosking, R. J. (1983). Steady shallow flow over curved beds. Journal of Fluid Mechanics, 128, 469–487.

    Article  Google Scholar 

  • Sivakumaran, N. S., & Yevjevich, V. (1987). Experimental verification of the Dressler curved-flow equations. Journal of Hydraulic Research, 25(3), 373–391.

    Article  Google Scholar 

  • Soares-Frazão, S., & Guinot, V. (2008). A second-order semi-implicit hybrid scheme for one-dimensional Boussinesq-type waves in rectangular channels. International Journal for Numerical Methods in Fluids, 58(3), 237–261.

    Article  Google Scholar 

  • Soares-Frazão, S., & Zech, Y. (2002). Undular bores and secondary waves: Experiments and hybrid finite-volume modelling. Journal of Hydraulic Research, 40(1), 33–43.

    Article  Google Scholar 

  • Southwell, R. V., & Vaisey, G. (1946). Relaxation methods applied to engineering problems XII: Fluid motions characterized by free streamlines. Philosophical Transactions of the Royal Society London A, 240(815), 117–161.

    Article  Google Scholar 

  • Stansby, P. K., Chegini, A., & Barnes, T. C. D. (1998). The initial stages of dam-break flow. Journal of Fluid Mechanics, 374, 407–424.

    Article  Google Scholar 

  • Steffler, P. M., & Jin, Y. C. (1993). Depth-averaged and moment equations for moderately shallow free surface flow. Journal of Hydraulic Research, 31(1), 5–17.

    Article  Google Scholar 

  • Strelkoff, T. S. (1964). Solution of highly curvilinear gravity flows. Journal of the Engineering Mechanics Division ASCE, 90(EM3), 195–221; 90(EM5), 467–470; 91(EM1), 172–178; 92(EM3), 95–96.

    Google Scholar 

  • Su, C. H., & Gardner, C. S. (1969). KDV equation and generalizations. Part III. Derivation of Korteweg-de Vries equation and Burgers equation. Journal of Mathematical Physics, 10(3), 536–539.

    Article  Google Scholar 

  • Tadayon, R., & Ramamurthy, A. S. (2009). Turbulence modeling of flows over circular spillways. Journal of Irrigation and Drainage Engineering, 135(4), 493–498.

    Article  Google Scholar 

  • Tanaka, M. (1986). The stability of solitary waves. Physics of Fluids, 29, 650–655.

    Article  Google Scholar 

  • Thom, A., & Apelt, C. (1961). Field computations in engineering and physics. London: Van Nostrand.

    Google Scholar 

  • Tursunov, A. A. (1969). Near-critical state of free surface flows. Izvestiya Vsesoyuznogo Naucho-Issledovatel’skogo Instituta Gidrotekhniki, 90, 201–224. (translated from Russian).

    Google Scholar 

  • Valiani, A. (1997). Linear and angular momentum conservation in hydraulic jump. Journal of Hydraulic Research, 35(3), 323–354.

    Article  Google Scholar 

  • Vallentine, H. R. (1969). Applied hydrodynamics. London: Butterworths.

    Google Scholar 

  • Van Dyke, M. (1975). Perturbation methods in fluid mechanics. Stanford, CA: The Parabolic Press.

    Google Scholar 

  • Wei, G., Kirby, J. T., Grilli, S. T., & Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves 1: Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294, 71–92.

    Article  Google Scholar 

  • Westernacher, A. (1965). Abflussbestimmung an ausgerundeten Abstürzen mit Fliesswechsel (Discharge determination at rounded drops at transitional flow). Dissertation, TU Karlsruhe, Karlsruhe, Germany (in German).

    Google Scholar 

  • Weyermuller, R. G., & Mostafa, M. G. (1976). Flow at grade-break from mild to steep slope flow. Journal of the Hydraulics Division ASCE, 102(HY10), 1439–1448.

    Google Scholar 

  • White, F. M. (1991). Viscous fluid flow. New York: McGraw-Hill.

    Google Scholar 

  • White, F. M. (2003). Fluid mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Zhu, D. Z., & Lawrence, G. A. (1998). Non-hydrostatic effects in layered shallow water flows. Journal of Fluid Mechanics, 355, 1–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castro-Orgaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Castro-Orgaz, O., Hager, W.H. (2017). Inviscid Channel Flows. In: Non-Hydrostatic Free Surface Flows. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-47971-2_3

Download citation

Publish with us

Policies and ethics