Skip to main content

Short-Term Learning and Memory: Training and Perceptual Learning

  • Chapter
  • First Online:
The Frequency-Following Response

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 61))

Abstract

The frequency-following response (FFR) is a sustained auditory-evoked potential that reflects the phase locking of neurons in the auditory brainstem to periodicities in the waveform of a sound. Studies have shown that short-term auditory training can improve the robustness and/or accuracy of this phase locking. FFR plasticity has been investigated using training tasks that are thought to involve some form of auditory temporal coding, including fundamental-frequency discrimination training, training to identify Mandarin lexical tones, and training to identify speech in noise. The results of these studies have shown that improvements in the trained task are often accompanied by FFR plasticity. This suggests that subcortical auditory processing is not hardwired but can be modified by training even in adulthood. The FFR has also been shown to change following auditory-cognitive training protocols in special populations of listeners who may have subcortical auditory processing deficits, such as children with language-based learning disabilities, elderly listeners, and listeners with sensorineural hearing loss. The results of these studies provide promising evidence that subcortical auditory plasticity could be harnessed to ameliorate auditory processing deficits. It has been hypothesized that this learning-induced subcortical plasticity may be guided by efferent cortical feedback; however, the mechanisms of FFR plasticity remain largely unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amitay, S., Zhang, Y.-X., Jones, P. R., & Moore, D. R. (2014). Perceptual learning: Top to bottom. Vision Research, 99, 69–77.

    Article  PubMed  Google Scholar 

  • Ananthanarayan, A. K., & Durrant, J. D. (1992). The frequency-following response and the onset response: Evaluation of frequency specificity using a forward-masking paradigm. Ear and Hearing, 13(4), 228–232.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, G. J., Ni, R., Bower, J. D., & Watanabe, T. (2010). Perceptual learning, aging, and improved visual performance in early stages of visual processing. Journal of Vision, 10(13), article 4, 1–13.

    Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2012). Aging affects neural precision of speech encoding. The Journal of Neuroscience, 32(41), 14156–14164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., Drehobl, S., & Kraus, N. (2013a). Effects of hearing loss on the subcortical representation of speech cues. The Journal of the Acoustical Society of America, 133(5), 3030–3038.

    Google Scholar 

  • Anderson, S., White-Schwoch, T., Choi, H. J., & Kraus, N. (2013b). Training changes processing of speech cues in older adults with hearing loss. Frontiers in Systems Neuroscience, 7. Doi:10.3389/fnsys.2013.00097

  • Anderson, S., White-Schwoch, T., Parbery-Clark, A., & Kraus, N. (2013c). Reversal of age-related neural timing delays with training. Proceedings of the National Academy of Sciences of the U S A, 110(11), 4357–4362.

    Google Scholar 

  • Anderson, S., White-Schwoch, T., Choi, H. J., & Kraus, N. (2014). Partial maintenance of auditory-based cognitive training benefits in older adults. Neuropsychologia, 62, 286–296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Atienza, M., Cantero, J. L., & Dominguez-Marin, E. (2002). The time course of neural changes underlying auditory perceptual learning. Learning & Memory, 9(3), 138–150.

    Article  Google Scholar 

  • Backus, B. C., & Guinan, J. J. (2006). Time-course of the human medial olivocochlear reflex. The Journal of the Acoustical Society of America, 119(5), 2889–2904.

    Article  PubMed  Google Scholar 

  • Bajo, V. M., & King, A. J. (2012). Cortical modulation of auditory processing in the midbrain. Frontiers in Neural Circuits, 6. Doi:10.3389/fncir.2012.00114

  • Bajo, V. M., Nodal, F. R., Moore, D. R., & King, A. J. (2010). The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience, 13(2), 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj, H. M., & Shinn-Cunningham, B. G. (2014). Rapid acquisition of auditory subcortical steady state responses using multichannel recordings. Clinical Neurophysiology, 125(9), 1878–1888.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bidelman, G. M. (2015). Multichannel recordings of the human brainstem frequency-following response: Scalp topography, source generators, and distinctions from the transient ABR. Hearing Research, 323, 68–80.

    Article  PubMed  Google Scholar 

  • Bones, O., & Plack, C. J. (2015). Losing the music: Aging affects the perception and subcortical neural representation of musical harmony. The Journal of Neuroscience, 35(9), 4071–4080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosnyak, D. J., Eaton, R. A., & Roberts, L. E. (2004). Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones. Cerebral Cortex, 14(10), 1088–1099.

    Article  PubMed  Google Scholar 

  • Bower, J. D., Watanabe, T., & Andersen, G. J. (2013). Perceptual learning and aging: Improved performance for low-contrast motion discrimination. Frontiers in Psychology, 4. Doi:10.3389/fpsyg.2013.00066

  • Brown, M., Irvine, D. R. F., & Park, V. N. (2004). Perceptual learning on an auditory frequency discrimination task by cats: Association with changes in primary auditory cortex. Cerebral Cortex, 14(9), 952–965.

    Article  PubMed  Google Scholar 

  • Carcagno, S., & Plack, C. J. (2011a). Pitch discrimination learning: Specificity for pitch and harmonic resolvability, and electrophysiological correlates. Journal of the Association for Research in Otolaryngology, 12(4), 503–517.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carcagno, S., & Plack, C. J. (2011b). Subcortical plasticity following perceptual learning in a pitch discrimination task. Journal of the Association for Research in Otolaryngology, 12, 89–100.

    Article  PubMed  Google Scholar 

  • Carlyon, R. P. (2004). How the brain separates sounds. Trends in Cognitive Sciences, 8(10), 465–471.

    Article  PubMed  Google Scholar 

  • Chandrasekaran, B., & Kraus, N. (2012). Biological factors contributing to reading ability: Subcortical auditory function. In A. A. Benasich & R. H. Fitch (Eds.), Developmental dyslexia: Early precursors, neurobehavioral markers and biological substrates (pp. 83–98). Baltimore: Paul H. Brookes Publishing.

    Google Scholar 

  • Chandrasekaran, B., Kraus, N., & Wong, P. C. M. (2012). Human inferior colliculus activity relates to individual differences in spoken language learning. Journal of Neurophysiology, 107(5), 1325–1336.

    Article  PubMed  Google Scholar 

  • Chandrasekaran, B., Skoe, E., & Kraus, N. (2014). An integrative model of subcortical auditory plasticity. Brain Topography, 27(4), 539–552.

    Article  PubMed  Google Scholar 

  • Clinard, C. G., & Tremblay, K. L. (2013). Aging degrades the neural encoding of simple and complex sounds in the human brainstem. Journal of the American Academy of Audiology, 24(7), 590–599.

    Article  PubMed  Google Scholar 

  • Clinard, C. G., Tremblay, K. L., & Krishnan, A. R. (2010). Aging alters the perception and physiological representation of frequency: Evidence from human frequency-following response recordings. Hearing Research, 264(1–2), 48–55.

    Article  PubMed  Google Scholar 

  • Dau, T. (2003). The importance of cochlear processing for the formation of auditory brainstem and frequency following responses. The Journal of the Acoustical Society of America, 113(2), 936–950.

    Article  PubMed  Google Scholar 

  • de Cheveigné, A. (2005). Pitch perception models. In R. Fay, A. N. Popper, C. J. Plack, & A. J. Oxenham (Eds.), Pitch: Neural coding and perception (pp. 169–233). New York: Springer.

    Chapter  Google Scholar 

  • Dediu, D., & Ladd, D. R. (2007). Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and microcephalin. Proceedings of the National Academy of Sciences of the U S A, 104(26), 10944–10949.

    Article  CAS  Google Scholar 

  • Deveau, J., & Seitz, A. R. (2014). Applying perceptual learning to achieve practical changes in vision. Frontiers in Psychology, 5(1166), 1–6.

    Google Scholar 

  • de Villers-Sidani, E., Alzghoul, L., Zhou, X., Simpson, K. L., et al. (2010). Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proceedings of the National Academy of Sciences of the U S A, 107(31), 13900–13905.

    Article  Google Scholar 

  • Dosher, B. A., & Lu, Z. L. (1999). Mechanisms of perceptual learning. Vision Research, 39(19), 3197–3221.

    Article  CAS  PubMed  Google Scholar 

  • Drayna, D., Manichaikul, A., de Lange, M., Snieder, H., & Spector, T. (2001). Genetic correlates of musical pitch recognition in humans. Science, 291(5510), 1969–1972.

    Article  CAS  PubMed  Google Scholar 

  • Drennan, W. R., Won, J. H., Dasika, V. K., & Rubinstein, J. T. (2007). Effects of temporal fine structure on the lateralization of speech and on speech understanding in noise. Journal of the Association for Research in Otolaryngology, 8(3), 373–383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engen, K. J. V. (2012). Speech-in-speech recognition: A training study. Language and Cognitive Processes, 27(7–8), 1089–1107.

    Article  Google Scholar 

  • Fu, Q.-J., & Galvin, J. J., 3rd. (2007). Perceptual learning and auditory training in cochlear implant recipients. Trends in Amplification, 11(3), 193–205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, E., & Suga, N. (1998). Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proceedings of the National Academy of Sciences of the U S A, 95(21), 12663–12670.

    Article  CAS  Google Scholar 

  • Gilbert, C. D., Sigman, M., & Crist, R. E. (2001). The neural basis of perceptual learning. Neuron, 31(5), 681–697.

    Article  CAS  PubMed  Google Scholar 

  • Gockel, H. E., Carlyon, R. P., Mehta, A., & Plack, C. J. (2011). The frequency following response (FFR) may reflect pitch-bearing information but is not a direct representation of pitch. Journal of the Association for Research in Otolaryngology, 12(6), 767–782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gockel, H. E., Krugliak, A., Plack, C. J., & Carlyon, R. P. (2015). Specificity of the human frequency following response for carrier and modulation frequency assessed using adaptation. Journal of the Association for Research in Otolaryngology, 16(6), 747–762.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstone, D. R. L., Braithwaite, D. W., & Byrge, L. A. (2012). Perceptual learning. In P. D. N. M. Seel (Ed.), Encyclopedia of the sciences of learning (pp. 2580–2583). New York: Springer.

    Google Scholar 

  • Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14–23.

    Article  PubMed  Google Scholar 

  • Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012.

    Article  CAS  PubMed  Google Scholar 

  • Hensch, T. K. (2004). Critical period regulation. Annual Review of Neuroscience, 27, 549–579.

    Article  CAS  PubMed  Google Scholar 

  • Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76(3), 486–502.

    Article  CAS  PubMed  Google Scholar 

  • Hornickel, J., Zecker, S. G., Bradlow, A. R., & Kraus, N. (2012). Assistive listening devices drive neuroplasticity in children with dyslexia. Proceedings of the National Academy of Sciences of the U S A, 109(41), 16731–16736.

    Article  CAS  Google Scholar 

  • Jones, P. R., Moore, D. R., Shub, D. E., & Amitay, S. (2015). The role of response bias in perceptual learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(5), 1456–1470.

    PubMed  PubMed Central  Google Scholar 

  • King, A. J., & Nelken, I. (2009). Unraveling the principles of auditory cortical processing: Can we learn from the visual system? Nature Neuroscience, 12(6), 698–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus, N., Skoe, E., Parbery-Clark, A., & Ashley, R. (2009). Experience-induced malleability in neural encoding of pitch, timbre, and timing. Annals of the New York Academy of Sciences, 1169, 543–557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraus, N., & White-Schwoch, T. (2015). Unraveling the biology of auditory learning: A cognitive-sensorimotor-reward framework. Trends in Cognitive Sciences, 19(11), 642–654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A. (2007). Frequency-following response. In R. F. Burkard, J. J. Eggermont, & M. Don (Eds.), Auditory evoked potentials: Basic principles and clinical applications (pp. 313–333). Philadelphia: Lippincott Williams.

    Google Scholar 

  • Krishnan, A., & Gandour, J. T. (2009). The role of the auditory brainstem in processing linguistically-relevant pitch patterns. Brain and Language, 110(3), 135–148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A., Xu, Y., Gandour, J., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Cognitive Brain Research, 25(1), 161–168.

    Article  PubMed  Google Scholar 

  • Krishnan, A., Gandour, J. T., & Bidelman, G. M. (2010). The effects of tone language experience on pitch processing in the brainstem. Journal of Neurolinguistics, 23(1), 81–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lively, S. E., Pisoni, D. B., Yamada, R. A., Tohkura, Y., & Yamada, T. (1994). Training Japanese listeners to identify English /r/ and /l/. III. Long-term retention of new phonetic categories. The Journal of the Acoustical Society of America, 96(4), 2076–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marmel, F., Linley, D., Carlyon, R. P., Gockel, H. E., et al. (2013). Subcortical neural synchrony and absolute thresholds predict frequency discrimination independently. Journal of the Association for Research in Otolaryngology, 14(5), 757–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menning, H., Roberts, L. E., & Pantev, C. (2000). Plastic changes in the auditory cortex induced by intensive frequency discrimination training. NeuroReport, 11(4), 817–822.

    Article  CAS  PubMed  Google Scholar 

  • Micheyl, C., Delhommeau, K., Perrot, X., & Oxenham, A. J. (2006). Influence of musical and psychoacoustical training on pitch discrimination. Hearing Research, 219(1–2), 36–47.

    Article  PubMed  Google Scholar 

  • Mollon, J. D., & Danilova, M. V. (1996). Three remarks on perceptual learning. Spatial Vision, 10(1), 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Monaghan, P., Metcalfe, N. B., & Ruxton, G. D. (1998). Does practice shape the brain? Nature, 394(6692), 434.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B. C. J. (2008). The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. Journal of the Association for Research in Otolaryngology, 9(4), 399–406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, D. R., & Shannon, R. V. (2009). Beyond cochlear implants: Awakening the deafened brain. Nature Neuroscience, 12(6), 686–691.

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E.-J. (2011). Erroneous analyses of interactions in neuroscience: A problem of significance. Nature Neuroscience, 14(9), 1105–1107.

    Article  CAS  PubMed  Google Scholar 

  • Petrov, A. A., Dosher, B. A., & Lu, Z.-L. (2005). The dynamics of perceptual learning: An incremental reweighting model. Psychological Review, 112(4), 715–743.

    Article  PubMed  Google Scholar 

  • Plack, C. J., & Oxenham, A. J. (2005). The Psychophysics of Pitch. In R. Fay, A. N. Popper, C. J. Plack, & A. J. Oxenham (Eds.), Pitch: Neural coding and perception. New York: Springer.

    Chapter  Google Scholar 

  • Polat, U., Schor, C., Tong, J.-L., Zomet, A., et al. (2012). Training the brain to overcome the effect of aging on the human eye. Scientific Reports, 2, 278. Doi:10.1038/srep00278

    Article  PubMed  PubMed Central  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. The Journal of Neuroscience, 13(1), 87–103.

    CAS  PubMed  Google Scholar 

  • Reed, A., Riley, J., Carraway, R., Carrasco, A., et al. (2011). Cortical map plasticity improves learning but is not necessary for improved performance. Neuron, 70(1), 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, S. (1992). Temporal information in speech: Acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 336(1278), 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Russo, N. M., Nicol, T. G., Zecker, S. G., Hayes, E. A., & Kraus, N. (2005). Auditory training improves neural timing in the human brainstem. Behavioural Brain Research, 156(1), 95–103.

    Article  PubMed  Google Scholar 

  • Sheehan, K. A., McArthur, G. M., & Bishop, D. V. M. (2005). Is discrimination training necessary to cause changes in the P2 auditory event-related brain potential to speech sounds? Cognitive Brain Research, 25(2), 547–553.

    Article  PubMed  Google Scholar 

  • Skoe, E., Chandrasekaran, B., Spitzer, E. R., Wong, P. C. M., & Kraus, N. (2014). Human brainstem plasticity: The interaction of stimulus probability and auditory learning. Neurobiology of Learning and Memory, 109, 82–93.

    Article  PubMed  Google Scholar 

  • Skuk, V. G., & Schweinberger, S. R. (2014). Influences of fundamental frequency, formant frequencies, aperiodicity, and spectrum level on the perception of voice gender. Journal of Speech, Language, and Hearing Research, 57(1), 285–296.

    Article  PubMed  Google Scholar 

  • Song, J. H., Nicol, T., & Kraus, N. (2011a). Test-retest reliability of the speech-evoked auditory brainstem response. Clinical Neurophysiology, 122(2), 346–355.

    Article  PubMed  Google Scholar 

  • Song, J. H., Nicol, T., & Kraus, N. (2011b). Reply to Test–retest reliability of the speech-evoked ABR is supported by tests of covariance. Clinical Neurophysiology, 122(9), 1893–1895.

    Article  Google Scholar 

  • Song, J. H., Skoe, E., Banai, K., & Kraus, N. (2012). Training to improve hearing speech in noise: Biological mechanisms. Cerebral Cortex, 22(5), 1180–1190.

    Article  PubMed  Google Scholar 

  • Song, J. H., Skoe, E., Wong, P. C. M., & Kraus, N. (2008). Plasticity in the adult human auditory brainstem following short-term linguistic training. Journal of Cognitive Neuroscience, 20(10), 1892–1902.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sowden, P. T., Davies, I. R., & Roling, P. (2000). Perceptual learning of the detection of features in X-ray images: A functional role for improvements in adults’ visual sensitivity? Journal of Experimental Psychology: Human Perception and Performance, 26(1), 379–390.

    CAS  PubMed  Google Scholar 

  • Suga, N., & Ma, X. (2003). Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Reviews Neuroscience, 4(10), 783–794.

    Article  CAS  PubMed  Google Scholar 

  • Tong, Y., Melara, R. D., & Rao, A. (2009). P2 enhancement from auditory discrimination training is associated with improved reaction times. Brain Research, 1297, 80–88.

    Article  CAS  PubMed  Google Scholar 

  • Tremblay, K. L., Ross, B., Inoue, K., McClannahan, K., & Collet, G. (2014). Is the auditory evoked P2 response a biomarker of learning? Frontiers in Systems Neuroscience, 8(28), 1–13.

    Google Scholar 

  • Tsodyks, M., & Gilbert, C. (2004). Neural networks and perceptual learning. Nature, 431(7010), 775–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzounopoulos, T., & Kraus, N. (2009). Learning to encode timing: Mechanisms of plasticity in the auditory brainstem. Neuron, 62(4), 463–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, T., & Sasaki, Y. (2015). Perceptual learning: Toward a comprehensive theory. Annual Review of Psychology, 66, 197–221.

    Article  PubMed  Google Scholar 

  • Weinberger, N. M. (2008). Cortical plasticity in associative learning and memory. In J. H. Byrne (Ed.), Learning and memory: A comprehensive reference. Vol. 3. Memory systems (pp. 187–218). Oxford: Academic Press.

    Chapter  Google Scholar 

  • Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, B. A., & Zhang, Y. (2009). A review of the generalization of auditory learning. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1515), 301–311.

    Article  PubMed  Google Scholar 

  • Wright, B. A., Wilson, R. M., & Sabin, A. T. (2010). Generalization lags behind learning on an auditory perceptual task. The Journal of Neuroscience, 30(35), 11635–11639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Krishnan, A., & Gandour, J. T. (2006). Specificity of experience-dependent pitch representation in the brainstem. NeuroReport, 17(15), 1601–1605.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuele Carcagno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Carcagno, S., Plack, C.J. (2017). Short-Term Learning and Memory: Training and Perceptual Learning. In: Kraus, N., Anderson, S., White-Schwoch, T., Fay, R., Popper, A. (eds) The Frequency-Following Response. Springer Handbook of Auditory Research, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-47944-6_4

Download citation

Publish with us

Policies and ethics