Skip to main content

Bioprospecting Archaea: Focus on Extreme Halophiles

  • Chapter
  • First Online:

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 16))

Abstract

In 1990, Woese et al. divided the Tree of Life into three separate domains: Eukarya, Bacteria, and Archaea. Archaea were originally perceived as little more than “odd bacteria” restricted to extreme environmental niches, but later discoveries challenged this assumption. Members of this domain populate a variety of unexpected environments (e.g. soils, seawater, and human bodies), and we currently witness ongoing massive expansions of the archaeal branch of the Tree of Life. Archaea are now recognized as major players in the biosphere and constitute a significant fraction of the earth’s biomass, yet they remain underexplored. An ongoing surge in exploration efforts is leading to an increase in the (a) number of isolated strains, (b) associated knowledge, and (c) utilization of Archaea in biotechnology. They are increasingly employed in fields as diverse as biocatalysis, biocomputing, bioplastic production, bioremediation, bioengineering, food, pharmaceuticals, and nutraceuticals. This chapter provides a general overview on bioprospecting Archaea, with a particular focus on extreme halophiles. We explore aspects such as diversity, ecology, screening techniques and biotechnology. Current and future trends in mining for applications are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akolkar AV, Durai D, Desai AJ (2010) Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation. J Appl Microbiol 109:44–53

    CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Al-Awadh H, Sorkhoh NA et al (2011) Mercury resistance and volatilization by oil utilizing haloarchaea under hypersaline conditions. Extremophiles 15:39–44

    Article  CAS  PubMed  Google Scholar 

  • Alam I, Antunes A, Kamau AA et al (2013) INDIGO – Integrated data warehouse of microbial genomes with examples from the red sea extremophiles. PLoS One 8(12):e82210. doi:10.1371/journal.pone.0082210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allers T, Barak S, Liddell S et al (2010) Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl Environ Microbiol 76(6):1759–1769. doi:10.1128/AEM.02670-09

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amoozegar MA, Makhdoumi-Kakhki A, Shahzadeh Fazeli SA et al (2012) Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. Int J Syst Evol Microbiol 62:1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Malekzadeh F, Malik KA (2003) Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J Microbiol Methods 52(3):353–359

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Salehghamari E, Khajeh K et al (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 48(3):160–167

    Article  CAS  PubMed  Google Scholar 

  • Antunes A, Rainey F, Wanner G et al (2008) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled Deep of the Red Sea. J Bacteriol 190:3580–3587

    Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011a) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433

    Google Scholar 

  • Antunes A, Alam I, Bajic VB, Stingl U (2011b) Genome sequence of Salinisphaera shabanensis, a gammaproteobacterium from the harsh, variable environment of the brine-seawater interface of the Shaban Deep in the Red Sea. J Bacteriol 193(17):4555–4556

    Google Scholar 

  • Antunes A, Alam I, Simões MF et al (2015) First insights on the viral communities of the deep-sea anoxic brines of the Red Sea. Genomics Proteomics Bioinformatics (accepted)

    Google Scholar 

  • Arico S, Salpin C (2005) Bioprospecting of genetic resources in the deep seabed: scientific, legal and policy aspects. UNU-IAS Report pp 1–72. http://www.ias.unu.edu

  • Ashby R, Solaiman D, Foglia T (2002) Poly(ethylene glycol)-mediated molar mass control of short-chain- and medium-chain-length poly(hydroxyalkanoates) from Pseudomonas oleovorans. Appl Microbiol Biotechnol 60:154–159

    Article  CAS  PubMed  Google Scholar 

  • Atanasova NS, Pietilä MK, Oksanen HM (2013) Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier. MicrobiologyOpen 2(5):811–825. doi:10.1002/mbo3.115

    PubMed  PubMed Central  Google Scholar 

  • Baker M (2012) De novo genome assembly: what every biologist should know. Nat Methods 9(4):333–337. doi:10.1038/nmeth.1935

    Article  CAS  Google Scholar 

  • Balch WE, Magrum LJ, Fox GE et al (1977) An ancient divergence among the bacteria. J Mol Evol 9(4):305–311

    Article  CAS  PubMed  Google Scholar 

  • Bardavid RE, Mana L, Oren A (2007) Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea–Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 57:780–783

    Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A 93(17):9188–9193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson DA, Clark K, Karsch-Mizrachi I et al (2015) GenBank. Nucleic Acids Res, 43(Database issue):D30–D35. doi:10.1093/nar/gku1216

    Google Scholar 

  • Bini E (2010) Archaeal transformation of metals in the environment. FEMS Microbiol Ecol 73:1–16

    CAS  PubMed  Google Scholar 

  • Bodaker I, Beja O, Sharon I et al (2009) Archaeal diversity in the Dead Sea: microbial survival under increasingly harsh conditions. Nat Resour Environ Issues 15(1):25

    Google Scholar 

  • Bougouffa S, Yang JK, Lee OO et al (2013) Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol 79(11):3425–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutaiba S, Bhatnagar T, Hacene H et al (2006) Preliminary characterisation of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J Mol Catal B Enzym 41(1):21–26

    Article  CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6(3):245–252

    Google Scholar 

  • Brochier C, Gribaldo S, Zivanovic Y et al (2005) Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol 6(5):R42

    Google Scholar 

  • Burns DG, Janssen PH, Itoh T et al (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  CAS  PubMed  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M et al (2010) Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer. Int J Syst Evol Microbiol 60:1196–1199

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Liao L, Xu XW et al (2008) Characterization of alcohol dehydrogenase from the haloalkaliphilic archaeon Natronomonas pharaonis. Extremophiles 12(3):471–476. doi:10.1007/s00792-007-0133-7

    Article  CAS  PubMed  Google Scholar 

  • Castelle CJ, Wrighton KC, Thomas BC et al (2015) Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 25(6):690–701

    Article  CAS  PubMed  Google Scholar 

  • Castillo AM, Gutiérrez MC, Kamekura M et al (2006a) Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56:1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Castillo AM, Gutiérrez MC, Kamekura M et al (2006b) Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol Microbiol 56:765–770

    Article  CAS  PubMed  Google Scholar 

  • Chaga G, Porath J, Illéni T (1993) Isolation and purification of amyloglucosidase from Halobacterium sodomense. Biomed Chromatogr 7(5):256–261

    Article  CAS  PubMed  Google Scholar 

  • Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110:621–632

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ (2010) Introduction of bacterial plastics PHA, PLA, PBS, PE, PTT, and PPP. In: Chen GQ (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin/Heidelberg, pp. 1–16

    Chapter  Google Scholar 

  • Choi J, Lee SY (1999) Factors affecting the economics of poly- hydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21

    Article  CAS  Google Scholar 

  • Connaris H, West SM, Hough DW, Danson MJ (1998) Cloning and overexpression in Escherichia coli of the gene encoding citrate synthase from the hyperthermophilic Archaeon Sulfolobus solfataricus. Extremophiles 2(2):61–66

    Article  CAS  PubMed  Google Scholar 

  • Cui HL, Qiu XX (2014) Salinarubrum litoreum gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from Chinese marine solar salterns. Antonie van Leeuwenhoek 105:135–141

    Article  CAS  PubMed  Google Scholar 

  • Cui HL, Zhang WJ (2014) Salinigranum rubrum gen. nov., sp. nov., a member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 64:2029–2033

    Article  CAS  PubMed  Google Scholar 

  • Cui HL, Gao X, Yang X, Xu XW (2010a) Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 14:493–499

    Article  CAS  PubMed  Google Scholar 

  • Cui HL, Gao X, Sun FF et al (2010b) Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:1366–1371

    Article  CAS  PubMed  Google Scholar 

  • Cui HL, Li XY, Gao X et al (2010c) Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:2089–2093

    Article  CAS  PubMed  Google Scholar 

  • Cui HL, Yang X, Mou YZ (2011a) Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria. Extremophiles 15:625–631

    Article  CAS  PubMed  Google Scholar 

  • Cui HL, Gao X, Yang X, Xu XW (2011b) Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. Int J Syst Evol Microbiol 61:1617–1621

    Article  CAS  PubMed  Google Scholar 

  • Cui HL, Yang X, Gao X, Xu XW (2011c) Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae. Int J Syst Evol Microbiol 61:2682–2689

    Article  CAS  PubMed  Google Scholar 

  • Cui HL, Mou YZ, Yang X et al (2012) Halorubellus salinus gen. nov., sp. nov. and Halorubellus litoreus sp. nov., novel halophilic archaea isolated from a marine solar saltern. Syst Appl Microbiol 35:30–34

    Article  CAS  PubMed  Google Scholar 

  • Cunningham F, Amode MR, Barrell D et al (2015) Ensembl 2015. Nucleic Acids Res 43(Database issue):D662–D669. doi:10.1093/nar/gku1010

    Article  PubMed  Google Scholar 

  • Daffonchio D, Borin S, Brusa T et al (2006) Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline. Nature 440(7081):203–207

    Article  CAS  PubMed  Google Scholar 

  • Das D, Salgaonkar BB, Mani K, Bragança JM (2014) Cadmium resistance in extremely halophilic archaeon Haloferax strain BBK2. Chemosphere 112:385–392

    Article  CAS  PubMed  Google Scholar 

  • DasSarma S, Arora P (2001) Halophiles. In: Encyclopedia of life sciences. Nature Publishing Group, London. http://www.els.net

  • DasSarma P, Coker JA, Huse V, DasSarma S (2010) Halophiles, industrial applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp. 1–43

    Google Scholar 

  • Delgado-García M, Valdivia-Urdiales B, Aguilar-González CN et al (2012) Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric 92:2575–2580

    Article  PubMed  CAS  Google Scholar 

  • de Macario EC, Macario AJ (2009) Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis. Int J Med Microbiol 299(2):99–108

    Article  PubMed  Google Scholar 

  • Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5(2):144–151

    Article  CAS  PubMed  Google Scholar 

  • Divya G, Achana T, Manzano RA (2013) Polyhydroxinates, a sustainable alternative to petro-based plastics. J Pet Environ Biotechnol 4(3):1000143

    Article  Google Scholar 

  • Echigo A, Minegishi H, Shimane Y et al (2013) Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 63:3556–3562

    Article  CAS  PubMed  Google Scholar 

  • Elazari-Volcani B (1957) Genus XII. Halobacterium Elazari-Volcani, 1940. In: Breed RS, Murray EGD, Smith NR (eds) Bergey’s manual of determinative bacteriology, 7th edn. Williams & Wilkins, Baltimore, pp. 207–212

    Google Scholar 

  • Eme L, Doolittle WF (2015) Microbial diversity: a bonanza of phyla. Curr Biol 25(6):R227–R230

    Article  CAS  PubMed  Google Scholar 

  • Ferrera I, Takacs-Vesbach CD, Reysenbach AL (2008) Archaeal ecology. In: Encyclopedia of life sciences (eLS). Wiley, Chichester

    Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417(6887):432–436

    Article  CAS  PubMed  Google Scholar 

  • Fox GE, Magrum LJ, Balch WE et al (1977) Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A 74(10):4537–4541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbiol behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Giménez MI, Studdert CA, Sánchez JJ, De Castro RE (2000) Extracellular protease of Natrialba magadii: purification and biochemical characterization. Extremophiles 4(3):181–188

    Article  PubMed  Google Scholar 

  • Good WA, Hartman PA (1970) Properties of the amylase from Halobacterium halobium. J Bacteriol 104(1):601–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grötzinger SW, Alam I, Ba Alawi WB et al (2014) Mining a database of single amplified genomes from red sea brine pool extremophiles-improving reliability of gene function prediction using a profile and pattern matching algorithm (PPMA). Front Microbiol 5:134. doi:10.3389/fmicb.2014.00134

    PubMed  PubMed Central  Google Scholar 

  • Guan Y, Hikmawan T, Antunes A et al (2015) Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea. Res Microbiol (accepted)

    Google Scholar 

  • Gupta RS, Naushad S, Baker S (2015) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov. Int J Syst Evol Microbiol 65:1050–1069

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez MC, Castillo AM, Kamekura M et al (2007) Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. Int J Syst Evol Microbiol 57:1402–1407

    Article  PubMed  Google Scholar 

  • Guy L, Ettema TJ (2011) The archaeal ‘TACK’superphylum and the origin of eukaryotes. Trends Microbiol 19(12):580–587

    Article  CAS  PubMed  Google Scholar 

  • Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100:1755–1776

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lu Q, Zhou L et al (2007) Molecular characterization of the phaECHm genes, required for biosynthesis of poly (3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73(19):6058–6065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Hou J, Liu H et al (2010) Wide distribution among halophilic Archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol 76:7811–7819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hezayen FF, Tindall BJ, Steinbüchel A, Rehm BH (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280

    CAS  PubMed  Google Scholar 

  • Holmes ML, Scopes RK, Moritz RL et al (1997) Purification and analysis of an extremely halophilic β-galactosidase from Haloferax alicantei. BBA-Protein Struct M 1337(2):276–286

    Article  CAS  Google Scholar 

  • Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706

    Article  CAS  PubMed  Google Scholar 

  • Huber H, Hohn MJ, Rachel R et al (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417(6884):63–67

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Itoh T, Ohkuma M, Kogure K (2011) Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int J Syst Evol Microbiol 61:942–946

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Yamaguchi T, Zhou P, Takashina T (2005) Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China. Extremophiles 9:111–116

    Article  CAS  PubMed  Google Scholar 

  • Izotova LS, Strongin AY, Chekulaeva LN et al (1983) Purification and properties of serine protease from Halobacterium halobium. J Bacteriol 155(2):826–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamieson A (2015) The hadal zone: life in the deepest oceans. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jones P, Binns D, Chang HY et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240. doi:10.1093/bioinformatics/btu031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joye SB, Samarkin VA, MacDonald IR et al (2009) Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci 2(5):349–354

    Article  CAS  Google Scholar 

  • Kakhki AM, Amoozegar MA, Khaledi EM (2011) Diversity of hydrolytic enzymes in haloarchaeal strains isolated from salt lake. Int J Environ Sci Technol 8(4):705–714

    Article  CAS  Google Scholar 

  • Kamekura M, Dyall-Smith ML (1995) Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J Gen Appl Microbiol 41:333–350

    Article  CAS  Google Scholar 

  • Kamekura M, Dyall-Smith ML, Upasani V et al (1997) Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47:853–857

    Article  CAS  PubMed  Google Scholar 

  • Kamekura M, Seno Y (1990) A halophilic extracellular protease from a halophilic archaebacterium strain 172 P1. Biochem Cell Biol 68(1):352–359

    Article  CAS  PubMed  Google Scholar 

  • Kamekura M, Seno Y, Holmes ML, Dyall-Smith ML (1992) Molecular cloning and sequencing of the gene for a halophilic alkaline serine protease (halolysin) from an unidentified halophilic archaea strain (172P1) and expression of the gene in Haloferax volcanii. J Bacteriol 174(3):736–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karan R, Capes MD, DasSarma P, DasSarma S (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic beta-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13:3. doi:10.1186/1472-6750-13-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquatic Biosystems 8(4) www.aquaticbiosystems.org/content/8/1/4

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409(6819):507–510

    Article  CAS  PubMed  Google Scholar 

  • Kashtan N, Roggensack SE, Rodrigue S et al (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344(6182):416–420. doi:10.1126/science.1248575

    Article  CAS  PubMed  Google Scholar 

  • Kharroub K, Gomri MA, Aguilera M, Monteoliva-Sanchez M (2014) Diversity of hydrolytic enzymes in haloarchaea isolated from Algerian sabkhas. Afr J Microbiol Res 8(52):3992–4001

    Google Scholar 

  • Kis-Papo T, Oren A (2000) Halocins: are they involved in the competition between halobacteria in saltern ponds? Extremophiles 4(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Kanai H, Hayashi T et al (1992) Haloalkaliphilic maltotriose-forming alpha-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J Bacteriol 174(11):3439–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Kanai H, Aono R et al (1994) Cloning, expression, and nucleotide sequence of the alpha-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J Bacteriol 176(16):5131–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kottmann R, Gray T, Murphy S et al (2008) A standard MIGS/MIMS compliant XML schema: toward the development of the Genomic Contextual Data Markup Language (GCDML). OMICS 12(2):115–121. doi:10.1089/omi.2008.0A10

    Article  CAS  PubMed  Google Scholar 

  • Krishnan G, Altekar W (1991) An unusual class I (Schiff base) fructose-1,6-bisphosphate aldolase from the halophilic archaebacterium Haloarcula vallismortis. Eur J Biochem 195(2):343–350

    Article  CAS  PubMed  Google Scholar 

  • Land M, Hauser L, Jun SR et al (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15(2):141–161. doi:10.1007/s10142-015-0433-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Land ML, Hyatt D, Jun SR et al (2014) Quality scores for 32,000 genomes. Stand Genomic Sci 9:20. doi:10.1186/1944-3277-9-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Lasken RS (2007) Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 10(5):510–516

    Article  CAS  PubMed  Google Scholar 

  • Law JH, Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-S (2013) Diversity of halophilic Archaea in fermented foods and human intestines and their application. J Microbiol Biotechnol 23(12):1645–1653

    Article  CAS  PubMed  Google Scholar 

  • Legat A, Gruber C, Zangger K et al (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–809

    Article  CAS  PubMed  Google Scholar 

  • Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39(Database issue):D19–D21. doi:10.1093/nar/gkq1019

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xiang H, Liu J et al (2003) Purification and biological characterization of halocin C8, a novel peptide antibiotic from Halobacterium strain AS7092. Extremophiles 7(5):401–407

    Article  CAS  PubMed  Google Scholar 

  • Litchfield CD (2011) Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol 38(10):1635–1647

    Article  CAS  PubMed  Google Scholar 

  • Liszka MJ, Clark ME, Schneider E, Clark DS (2012) Nature versus nurture: developing enzymes that function under extreme conditions. Ann Rev Chem Biol Eng 3:77–102

    Article  CAS  Google Scholar 

  • LPSN-List of Prokaryotic Names with Standing in Nomenclature (2015) List of prokaryotic names with standing in nomenclature. www.bacterio.net

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  PubMed  Google Scholar 

  • Makhdoumi-Kakhki A, Amoozegar MA, Bagheri M et al (2012a) Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline lake. Int J Syst Evol Microbiol 62:1021–1026

    Article  CAS  PubMed  Google Scholar 

  • Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A (2012b) Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran-Bidgol salt lake. Int J Syst Evol Microbiol 62:1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Mapelli F, Borin S, Daffonchio D (2012) Microbial diversity in deep hypersaline anoxic basins. In: Stan-Lotter H, Fendrihan S (eds) Adaption of microbial life to environmental extremes. Springer, Wien/New York, pp. 21–36

    Chapter  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Marhuenda-Egea F, Bonete MJ (2002) Extreme halophilic enzymes in organic solvents. Curr Opin Biotechnol 13:385–389

    Article  CAS  PubMed  Google Scholar 

  • McGenity TJ, Grant WD (1995) Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb., nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 18:237–243

    Article  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD (1998) Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 48:1187–1196

    Article  PubMed  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2(3):243–250

    Article  CAS  PubMed  Google Scholar 

  • Meknaci R, Lopes P, Servy C et al (2014) Agar-supported cultivation of Halorubrum sp. SSR, and production of halocin C8 on the scale-up prototype platotex. Extremophiles 18(6):1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Xu J, Qin D et al (2014) Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8(3):650–659

    Article  CAS  PubMed  Google Scholar 

  • Mick E, Sorek R (2014) High-resolution metagenomics. Nat Biotechnol 32(8):750–751. doi:10.1038/nbt.2962

    Article  CAS  PubMed  Google Scholar 

  • Minegishi H, Echigo A, Nagaoka S et al (2010) Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 60:2513–2516

    Article  CAS  PubMed  Google Scholar 

  • Minegishi H, Kamekura M, Kitajima-Ihara T et al (1998) Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 48:1305–1312

    Article  Google Scholar 

  • Mitchell A, Chang HY, Daugherty L et al (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43(Database issue):D213–D221. doi:10.1093/nar/gku1243

    Article  PubMed  Google Scholar 

  • Mohamed YM, Ghazy MA, Sayed A et al (2013) Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea brine pool. Sci Rep 3:3358. doi:10.1038/srep03358

  • Moshfegh M, Shahverdi AR, Zarrini G, Faramarzi MA (2013) Biochemical characterization of an extracellular polyextremophilic α-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 17(4):677–687

    Article  CAS  PubMed  Google Scholar 

  • Mou YZ, Qiu XX, Zhao ML et al (2012) Halohasta litorea gen. nov. sp. nov., and Halohasta litchfieldiae sp. nov., isolated from the Daliang aquaculture farm, China and from Deep Lake, Antarctica, respectively. Extremophiles 16(6):895–901

    Article  CAS  PubMed  Google Scholar 

  • Namwong S, Tanasupawat S, Visessanguan W et al (2007) Halococcus thailandensis sp. nov., from fish sauce in Thailand. Int J Syst Evol Microbiol 57:2199–2203

    Article  CAS  PubMed  Google Scholar 

  • Nielsen HB, Almeida M, Juncker AS et al (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32(8):822–828. doi:10.1038/nbt.2939

    Article  CAS  PubMed  Google Scholar 

  • Nunoura T, Takaki Y, Kakuta J et al (2010) Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Ac Res 1–20. doi:10.1093/nar/gkq1228

    Google Scholar 

  • O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28:23–31

    Article  PubMed  CAS  Google Scholar 

  • Ollivier B, Caumette P, Garcia J-L, Mah R (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58(1):27–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ondov B, Bergman N, Phillippy A (2014) Krona: interactive metagenomic visualization in a web browser. In: Nelson KE (ed) Encyclopedia of metagenomics. Springer, New York, pp. 1–8

    Google Scholar 

  • Onishi H, Mori T, Takeuchi S et al (1983) Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification, and characterization. Appl Environ Microbiol 45(1):24–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (1983) A thermophilic amyloglucosidase from Halobacterium sodomense, a halophilic bacterium from the Dead Sea. Curr Microbiol 8(4):225–230

    Article  CAS  Google Scholar 

  • Oren A (2000) Life at high salt concentrations. In: The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, release 3.1, Springer, New York. http://link.springer-ny.com/link/service/books/10125

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Elevi R, Watanabe S et al (2002) Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol 52:1831–1835

    CAS  PubMed  Google Scholar 

  • Ostle AG, Holt J (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44:238–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SH, Lee JH, Lee HK (2000) Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J Microbiol 38:224–229

    CAS  Google Scholar 

  • Paula DP, Gleny A, Martha H et al (2013) Kinetics of arsenite removal by halobacteria from a highly and Andean Chilean Salar. Aquat Biosyst 9:8. www.aquaticbiosystems.org/content/9/1/8 .

  • Pérez-Pomares F, Bautista V, Ferrer J et al (2003) α-amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7(4):299–306

    Article  PubMed  CAS  Google Scholar 

  • Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci U S A 93(13):6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price LB, Shand RF (2000) Halocin S8: a 36-amino-acid microhalocin from the haloarchaeal strain S8a. J Bacteriol 182(17):4951–4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst AJ, Auerbach AK, Moissl-Eichinger C (2013) Archaea on human skin. PLoS One 8(6):e65388. doi:10.1371/journal.pone.0065388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst AJ, Moissl-Eichinger C (2015) “Altiarchaeales”: uncultivated Archaea from the subsurface. Life 5(2):1381–1395

    Article  PubMed  PubMed Central  Google Scholar 

  • Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Rai R, Keshavarz T, Roether JA et al (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R Rep 72:29–47

    Article  CAS  Google Scholar 

  • Reed CJ, Lewis H, Trejo E et al (2013) Protein adaptations in archaeal extremophiles. Archaea 2013. http://dx.doi.org/10.1155/2013/373275

  • Reddy TB, Thomas AD, Stamatis D et al (2015) The genomes onLine database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Res 43(Database issue):D1099–D1106. doi:10.1093/nar/gku950

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Ann Rev Microbiol 56(1):117–137

    Article  CAS  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Valera F (1988) Characteristics and microbial ecology of hypersaline environments. In: Rodríguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp. 3–30

    Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409(6823):1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Ryu K, Kim J, Dordick JS (1994) Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzym Microb Technol 16(4):266–275

    Article  CAS  Google Scholar 

  • Sagar S, Esau L, Hikmawan T et al (2013) Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the red sea. BMC Complement Altern Med 13(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  • Salgaonkar BB, Bragança JM (2015) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense strain E3. Int J Biol Macromol 78:339–346

    Article  CAS  PubMed  Google Scholar 

  • Salgaonkar BB, Das D, Bragança JM (2015) Resistance of extremely halophilic archaea to zinc and zinc oxide nanoparticles. Appl Nanosci. doi:10.1007/s13204-015-0424-8

    Google Scholar 

  • Salgaonkar BB, Kabilan M, Nair A et al (2012) Interspecific interactions among members of family Halobacteriaceae from natural solar salterns. Probiotics Antimicrob Proteins 4(2):98–107

    Article  CAS  PubMed  Google Scholar 

  • Sánchez RJ, Schripsema J, da Silva LF et al (2003) Medium-chain-length polyhydroxyalkanoic acids (PHAmcl) produced by Pseudomonas putida IPT 046 from renewable sources. Eur Polym J 39:1385–1394

    Article  CAS  Google Scholar 

  • Savage KN, Krumholz LR, Oren A, Elshahed MS (2007) Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57:19–24

    Article  CAS  PubMed  Google Scholar 

  • Savage KN, Krumholz LR, Oren A, Elshahed MS (2008) Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860

    Article  PubMed  Google Scholar 

  • Sayed A, Ghazy MA, Ferreira AJ (2014) A novel mercuric reductase from the unique deep brine environment of Atlantis II in the Red Sea. J Biol Chem 289(3):1675–1687

    Google Scholar 

  • Schoop G (1935) Halococcus litoralis, ein obligat halphiler Farbstoffbildner. Dtsch Tierarztl Wochenschr 43:817–820

    Google Scholar 

  • Shimane Y, Hatada Y, Minegishi H et al (2010) Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. Int J Syst Evol Microbiol 60:2529–2534

    Article  CAS  PubMed  Google Scholar 

  • Shimane Y, Hatada Y, Minegishi H et al (2011) Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt. Int J Syst Evol Microbiol 61:2266–2270

    Article  CAS  PubMed  Google Scholar 

  • Siam R, Mustafa GA, Sharaf H et al (2012) Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and Discovery Deep brine pools. PLoS One 7(8):e42872. doi:10.1371/journal.pone.0042872

  • Skerman VBD, McGowan V, Sneath PHA et al (1980) Approved lists. Int J Syst Bacteriol 30:225–420

    Article  Google Scholar 

  • Soares MM, Silva RD, Gomes E (1999) Screening of bacterial strains for pectinolytic activity: characterization of the polygalacturonase produced by Bacillus sp. Rev Microbiol 30(4):299–303

    Article  CAS  Google Scholar 

  • Spang A, Saw JH, Jørgensen SL et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521(7551):173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiekermann P, Rehm BH, Kalscheuer R (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P, Bragança J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticle synthesis using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17:821–831

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P, Bragança J, Kowshik M (2014) In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line. Biotechnol Prog 30:1480–1487

    Article  CAS  PubMed  Google Scholar 

  • Song HS, Cha IT, Yim KJ et al (2014) Halapricum salinum gen. nov., sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Antonie Van Leeuwenhoek 105:979–986

    Article  CAS  PubMed  Google Scholar 

  • Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11(1):9–16. doi:10.1038/nrg2695

    Article  CAS  PubMed  Google Scholar 

  • Stein L (2001) Genome annotation: from sequence to biology. Nat Rev Genet 2(7):493–503. doi:10.1038/35080529

    Article  CAS  PubMed  Google Scholar 

  • Stepanov VM, Rudenskaya GN, Revina LP et al (1992) A serine proteinase of an archaebacterium, Halobacterium mediterranei. A homologue of eubacterial subtilisins. Biochem J 285:281–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Studdert CA, De Castro RE, Seitz KH, Sánchez JJ (1997) Detection and preliminary characterization of extracellular proteolytic activities of the haloalkaliphilic archaeon Natronococcus occultus. Arch Microbiol 168(6):532–535

    Article  CAS  PubMed  Google Scholar 

  • Tan GY, Chen CL, Li L et al (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754

    Article  CAS  Google Scholar 

  • Tapingkae W, Tanasupawat S, Itoh T et al (2008) Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand. Int J Syst Evol Microbiol 58:2378–2383

    Article  CAS  PubMed  Google Scholar 

  • Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5:41–57

    Article  Google Scholar 

  • Torreblanca M, Rodriguez-Valera F, Juez G et al (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99

    Article  Google Scholar 

  • Torreblanca M, Meseguer I, Ventosa A (1994) Production of halocin is a practically universal feature of archaeal halophilic rods. Lett Appl Microbiol 19(4):201–205

    Article  CAS  Google Scholar 

  • Trivedi S, Choudhary OP, Gharu J (2011) Different proposed applications of bacteriorhodopsin. Recent Pat DNA Gen Seq 5:35–40

    Article  CAS  Google Scholar 

  • van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  PubMed  CAS  Google Scholar 

  • van der Wielen PW, Bolhuis H, Borin S et al (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Nature 307:121–123

    Google Scholar 

  • Ventosa A, Gutiérrez MC, Kamekura M, Dyall-Smith ML (1999) Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49:131–136

    Article  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ventosa A, Sánchez-Porro C, Martín S, Mellado E (2005) Halophilic archaea and bacteria as a source of extracellular hydrolytic enzymes. In: Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp. 337–354

    Google Scholar 

  • Vidyasagar M, Prakash S, Litchfield C, Sreeramulu K (2006) Purification and characterization of a thermostable, haloalkaliphilic extracellular serine protease from the extreme halophilic archaeon Halogeometricum borinquense strain TSS101. Archaea 2(1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Mering C, Hugenholtz P, Raes J et al (2007) Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315(5815):1126–1130. doi:10.1126/science.1133420

    Article  CAS  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407(6806):897–900

    Article  CAS  PubMed  Google Scholar 

  • Vreeland RH, Straight S, Krammes J et al (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452

    Article  CAS  PubMed  Google Scholar 

  • Wainø M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190

    Google Scholar 

  • Wainø M, Ingvorsen K (2003) Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7(2):87–93

    PubMed  Google Scholar 

  • Wang Y, Yang J, Lee OO et al (2011) Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea. ISME J 5(10):1652–1659

    Google Scholar 

  • Waters E, Hohn MJ, Ahel I et al (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci U S A 100(22):12984–12988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wejse PL, Ingvorsen K, Mortensen KK (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7(5):423–431

    Article  CAS  PubMed  Google Scholar 

  • Williams GP, Gnanadesigan M, Ravikumar S (2013) Biosorption and bio-kinetic properties of solar saltern halobacterial strains for managing Zn2+, As2+ and Cd2+ metals. Geomicrobiol J 30:497–500

    Article  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74(11):5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87(12):4576–4579

    Google Scholar 

  • Wu CS, Liao HT (2014) The mechanical properties, biocompatibility and biodegradability of chestnut shell fibre and polyhydroxyalkanoate composites. Polym Degrad Stab 99:274–282

    Article  CAS  Google Scholar 

  • Xu Y, Zhou P, Tian X (1999) Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49:261–266

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Fan H, Ventosa A et al (2005) Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. Int J Syst Evol Microbiol 55:2501–2505

    Article  CAS  PubMed  Google Scholar 

  • Yatsunami R, Ando A, Yang Y et al (2014) Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front Microbiol 5:100. doi:10.3389/fmicb.2014.00100

    Article  PubMed  PubMed Central  Google Scholar 

  • Yooseph S, Sutton G, Rusch DB et al (2007) The sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLoS Biol 5(3):e16. doi:10.1371/journal.pbio.0050016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu TX (1991) Protease of haloalkaliphiles. In: Horikoshi K, Grant WD (eds) Superbugs: microorganisms in extreme environments. Springer, New York, pp. 76–83

    Google Scholar 

Download references

Acknowledgments

The authors of this publication were partially supported by competitive research funding from King Abdullah University of Science and Technology (KAUST), and by KAUST baseline research funds to VBB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Antunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Antunes, A., Simões, M.F., Grötzinger, S.W., Eppinger, J., Bragança, J., Bajic, V.B. (2017). Bioprospecting Archaea: Focus on Extreme Halophiles. In: Paterson, R., Lima, N. (eds) Bioprospecting. Topics in Biodiversity and Conservation, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-47935-4_5

Download citation

Publish with us

Policies and ethics