Skip to main content

Divergence Detection for CCSL Specification via Clock Causality Chain

  • Conference paper
  • First Online:
Dependable Software Engineering: Theories, Tools, and Applications (SETTA 2016)

Abstract

The Clock Constraint Specification Language (CCSL), first introduced as a companion language for Modeling and Analysis of Real-Time and Embedded systems (MARTE), has now evolved beyond the time specification of MARTE, and has become a full-fledged domain specific modeling language widely used in many domains. A CCSL specification is a set of constraints, which symbolically represents a set of valid clock schedules, where a schedule represents the order of the actions in a system. This paper proposes an algorithm to detect the divergence behavior in the schedules that satisfy a given CCSL specification (i.e. it proposes to detect the presence of infinite but non periodic schedules in a CCSL specification). We investigate the divergence by constructing causality chains among the clocks resulting from the constraints of the specification. Depending on cycles in the causality chains, a bounded clock set built by our proposed algorithm can be used to decide whether the given specification is divergence-freedom or not. The approach is illustrated on one example for architecture-driven analysis.

This work is supported by the Natural Science Foundation of China (Grant No. 61572306, 61502294).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    condition (iii) in Definition 12 is not necessarily be considered.

References

  1. OMG, UML Profile for MARTE v1.0. Object Management Group (2009). formal/02-11-2009

    Google Scholar 

  2. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 559–573. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. André, C.: Syntax and Semantics of the Clock Constraint Specification Language (CCSL), p. 37. Inria I3S Sophia Antipolis (2009)

    Google Scholar 

  4. DeAntoni, J., Mallet, F.: TimeSquare: treat your models with logical time. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Mallet, F., Millo, J.-V., Romenska, Y.: State-based representation of CCSL operators (2013)

    Google Scholar 

  6. Mallet, F., Millo, J.-V.: Boundness issues in CCSL specifications. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 20–35. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Mallet, F., Millo, J.-V., De Simone, R.: Safe CCSL specifications and marked graphs. In: MEMOCODE - 11th IEEE/ACM International Conference on Formal Methods and Models for Codesign. IEEE CS (2013)

    Google Scholar 

  8. Deantoni, J., André, C., Gascon, R.: CCSL denotational semantics, p. 29. Inria I3S Sophia Antipolis (2014)

    Google Scholar 

  9. Benveniste, A., et al.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

    Article  Google Scholar 

  10. Ling, Y., et al.: Schedulability analysis with CCSL specifications. In: 2013 20th Asia-Pacific Software Engineering Conference (APSEC) (2013)

    Google Scholar 

  11. Owre, S., Shankar, N.: Abstract Datatypes in PVS. Computer Science Laboratory, SRI International, Menlo Park (1993)

    Google Scholar 

  12. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 2011. LNCS (LNAI), vol. 607, pp. 748–752. Springer, Heidelberg (1992)

    Google Scholar 

  13. Computer Science Laboratory, SRI International. PVS: Specification and Verification System. http://pvs.csl.sri.com/

  14. Feiler, P.H., Hansson, J.: Flow latency analysis with the architecture analysis and design language (AADL), CMU (2007)

    Google Scholar 

  15. Mallet, F., Andre, C.: UML/MARTE CCSL, Signal and Petri nets (2008)

    Google Scholar 

  16. Gascon, R., Mallet, F., DeAntoni, J.: Logical time and temporal logics: comparing UML MARTE/CCSL and PSL. In: 2011 Eighteenth International Symposium on Temporal Representation and Reasoning (TIME) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Xu, Q., de Simone, R., DeAntoni, J. (2016). Divergence Detection for CCSL Specification via Clock Causality Chain. In: Fränzle, M., Kapur, D., Zhan, N. (eds) Dependable Software Engineering: Theories, Tools, and Applications. SETTA 2016. Lecture Notes in Computer Science(), vol 9984. Springer, Cham. https://doi.org/10.1007/978-3-319-47677-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47677-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47676-6

  • Online ISBN: 978-3-319-47677-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics