Skip to main content

Shock Wave Interaction with Matter

  • Chapter
  • First Online:
Medical and Biomedical Applications of Shock Waves

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

The interaction of shock waves with concretions inside the human body is a vast research field and although considerable progress has been made to understand the phenomena involved, there are still questions to be answered. Even more complicated are the physical and biochemical mechanisms involved in tissue damage. In many situations, secondary effects of shock wave passage are more important than the direct influence of the shock wave itself. Spallation, cavitation, circumferential compression, stress, fatigue, and other calculi fragmentation mechanisms are explained in this chapter. Some experimental shock wave sources designed to enhance stone fragmentation and reduce tissue damage during extracorporeal lithotripsy are shown as examples of the worldwide efforts to improve clinical equipment. The final section of this chapter deals with the effects produced on the human body during extracorporeal shock wave therapy. Main subjects include the translation of mechanical stimuli into biochemical signals, stimulation of the cells responsible for bone healing, tissue, nerve and axonal regeneration, activation of pain control systems, reduction of oxidative stress and inflammation, enhancement of endothelial capillary connections, collagen matrix changes, and differentiation of stem cells. Other topics involving shock wave interaction with cells, such as gene transfection, genetic transformation of microorganisms, and the bactericidal effect of shock waves, are discussed in Chap. 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams C, Lipson S, Ross L (1988) Pathologic changes in the kidneys and other organs of dogs undergoing extracorporeal shock wave lithotripsy with a tubless lithotripter. J Urol 140:391–394

    Google Scholar 

  • Aicher A, Heeschen C, Sasaki K, Urbich C, Zeiher AM, Dimmeler S (2006) Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation 114:2823–2830

    Article  Google Scholar 

  • Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13:2805–2819

    Article  ADS  MATH  Google Scholar 

  • Allen JS, Roy RA (2000) Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear viscoelasticity. J Acoust Soc Am 108:1640–1650

    Article  ADS  Google Scholar 

  • Alvarez UM, RamĂ­rez A, FernĂ¡ndez F, MĂ©ndez A, Loske AM (2008) The influence of single-pulse and tandem shock waves on bacteria. Shock Waves 17:441–447

    Article  ADS  Google Scholar 

  • Anderson KR, Kerbl K, Fadden PT, Wick MR, McDougall EM, Clayman RV (1995) Effect of piezoelectric energy on porcine kidneys using the EDAP LT.02. J Urol 153:1295–1298

    Article  Google Scholar 

  • Andersson G, Backman LJ, Scott A, Lorentzon R, Forsgren S, Danielson P (2011) Substance P accelerates hypercellularity and angiogenesis in tendon tissue and enhances paratendinitis in response to Achilles tendon overuse in a tendinopathy model. Br J Sports Med 45:1017–1022

    Article  Google Scholar 

  • Angstman NB, Kiessling MC, Frank HG, Schmitz C (2015) High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves. Front Behav Neurosci 9:12. doi:10.3389/fnbeh.2015.00012

    Article  Google Scholar 

  • Antonic V, Stojadinovic A (2012) Anti-inflamatory effects of extracorporeal shockwave therapy. Shockwave Int Soc Med Shockwave Treat 8:16–18

    Google Scholar 

  • Arora M, Junge L, Ohl CD (2005) Cavitation cluster dynamics in shock-wave lithotripsy. Part 1: Free field. Ultrasound Med Biol 31:827–839

    Article  Google Scholar 

  • Arora M, Ohl CD, Lohse D (2007) Effect of nuclei concentration on cavitation cluster dynamics. J Acoust Soc Am 121:3432–3436

    Article  ADS  Google Scholar 

  • Averkiou MA, Cleveland RO (1999) Modeling of an electrohydraulic lithotripter with the KZK equation. J Acoust Soc Am 106:102–112

    Article  ADS  Google Scholar 

  • Bachmann R, Heimbach D, Kersjes W, Jacobs D, Schild H, Hesse A (2000) A new type of artificial urinary calculi: in vitro study by spiral CT. Investig Radiol 35:672–675

    Article  Google Scholar 

  • Bailey MR (1997) Control of acoustic cavitation with application to lithotripsy [dissertation]. University of Texas at Austin, Texas, 221 p

    Google Scholar 

  • Bailey MR (The University of Texas at Austin, Austin, Texas and Defense Technical Information Center) (1997) Control of acoustic cavitation with application to lithotripsy. Final report. Applied Research Laboratories Report No: ARL-TR-97-1

    Google Scholar 

  • Bailey MR, Pishchalnikov YA, Sapozhnikov OA, Cleveland RO, McAteer JA, Miller NA, Pishchalnikova IV, Connors BA, Crum LA, Evan AP (2005) Cavitation detection during shock wave lithotripsy. Ultrasound Med Biol 31:1245–1256

    Article  Google Scholar 

  • Banner B, Ziesmer D, Collins LA (1991) Proliferative glomerulopathy following extracorporeal shock wave lithotripsy in the pig. J Urol 146:1425–1458

    Google Scholar 

  • Baumgartner BR, Dickey KW, Ambrose SS, Walton KN, Nelson RC, Bernardino ME (1987) Kidney changes after extracorporeal shock wave lithotripsy: appearance on MR imaging. Radiology 163:531–534

    Article  Google Scholar 

  • Beissner K (1987) Radiation force calculations. Acustica 62:255–263

    Google Scholar 

  • Ben-Dor G, Elperin T, Igra O, Lifschitz A (2001) Handbook of shock waves. Academic, San Diego, San Francisco, New York, Boston

    Google Scholar 

  • Bergsdorf T, ThĂ¼roff S, Chaussy C (2005a) The isolated perfused kidney: an in vitro test system for evaluation of renal tissue damage induced by high-energy shockwave sources. J Endourol 19:883–888

    Article  Google Scholar 

  • Bhatta KM, Prien EL Jr, Dretler SP (1989) Cystine calculi-rough and smooth: a new clinical distinction. J Urol 142:937–940

    Google Scholar 

  • Blackstock DT (2000) Fundamentals of physical acoustics. Wiley, New York

    Google Scholar 

  • Blake JR, Gibson DC (1987) Cavitation bubbles near boundaries. Annu Rev Fluid Mech 19:99–123

    Article  ADS  Google Scholar 

  • Blake JR, Hooton MC, Robinson PB, Tong RP (1997) Collapsing cavities, toroidal bubbles and jet impact. Philos Trans A 355:537–550

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bloch W, Suhr F (2014) Mechanotransduction: mechanical stimulation of biological processes. How shock and pressure waves initiate the healing process. In: Lohrer H, Gerdesmeyer L (eds) Multidisciplinary medical applications. Level10 Buchverlag, Heilbronn, pp 50–69 (Shock wave therapy in practice)

    Google Scholar 

  • Blomgren PM, Connors BA, Lingeman JE, Willis LR, Evan AP (1997) Quantitation of shock wave lithotripsy-induced lesion in small and large pig kidneys. Anat Rec 249:341–348

    Article  Google Scholar 

  • Bohris C, Roosen A, Dickmann M, Hocaoglu Y, Sandner S, Bader M, Sief CG, Walther S (2012) Monitoring the coupling of the lithotripter head with skin during routine shock wave lithotripsy with a surveillance camera. J Urol 187:157–163

    Article  Google Scholar 

  • Borkent BM, Arora M, Ohl CD (2007) Reproducible cavitation activity in water-particle suspensions. J Acoust Soc Am 121:1406–1412

    Article  ADS  Google Scholar 

  • Bosch G, de Mos M, van Binsbergen R, van Schie HT, van de Lest CHA, van Weeren PR (2009) The effect of focused extracorporeal shock wave therapy on collagen matrix and gene expression in normal tendons and ligaments. Equine Vet J 41:335–341

    Article  Google Scholar 

  • Braun W, Claes L, RĂ¼ter A, Paschke D (1992) Effects of extracorporeal shock waves on the stability of interface between bone and polymethlymethacrylate: an in vitro study on bhuman femoral segments. Clin Biomech 7:47–54

    Article  Google Scholar 

  • Bräuner T, BrĂ¼mmer F, HĂ¼lser DF (1989) Histopathology of shock wave treated tumor cell suspensions and multicell tumor spheroids. Ultrasound Med Biol 15:451–460

    Article  Google Scholar 

  • Brennen CE (1995) Cavitation bubble dynamics. Oxford University Press, New York

    MATH  Google Scholar 

  • Brujan EA, Nahen K, Schmidt P, Vogel A (2001a) Dynamics of laser-induced cavitation bubbles near an elastic boundary. J Fluid Mech 433:251–281

    Article  ADS  MATH  Google Scholar 

  • Brujan EA, Nahen K, Schmidt P, Vogel A (2001b) Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J Fluid Mech 433:283–314

    Article  ADS  MATH  Google Scholar 

  • Brujan EA, Keen GS, Vogel A, Blake JR (2002) The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys Fluids 14:85–92

    Article  ADS  MATH  Google Scholar 

  • Brujan EA, Ikeda T, Matsumoto Y (2005) Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys Med Biol 50:4797–4809

    Article  Google Scholar 

  • Brujan EA, Ikeda T, Matsumoto Y (2008) On the pressure of cavitation bubbles. Exp Thermal Fluid Sci 32:1188–1191

    Article  Google Scholar 

  • Brujan EA, Ikeda T, Yoshinaka K, Matsumoto Y (2011) The final stage of the collapse of a cloud of bubbles close to a rigid boundary. Snonochemistry 18:59–64

    Article  Google Scholar 

  • BrĂ¼mmer F, Bräuner T, HĂ¼lser DF (1990) Biological effects of shock waves. World J Urol 8:224–232

    Article  Google Scholar 

  • Canseco G, de Icaza-Herrera M, FernĂ¡ndez F, Loske AM (2011) Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation. Ultrasonics 51:803–810

    Article  Google Scholar 

  • Carnell MT, Barrington SJ, Emmony DC (1997) A phase-inverting parabolic concentrator for the generation of negative waves in water. J Acoust Soc Am 102:2556–2560

    Article  ADS  Google Scholar 

  • Carstensen EL, Gracewski S, Dalecki D (2000) The search for cavitation in vivo. Ultrasound Med Biol 26:1377–1385

    Article  Google Scholar 

  • Cathignol D (1998) Comparison between the effects of cavitation induced by two different pressure-time shock waveform pulses. IEEE Trans Ultrason Ferroelectr Freq Control 45:788–799

    Article  Google Scholar 

  • Chao YH, Tsuang YH, Sun JS, Chen LT, Chiang YF, Wang CC, Chen MH (2008) Effects of shock tenocyte waves on proliferation and extracellular matrix metabolism. Ultrasound Med Biol 34:841–852

    Article  Google Scholar 

  • Chaussy C (ed) (1986) Extracorporcal shock wave lithotripsy Technical concept, experimental research, and clinical application, 2nd edn. Karger, Basel, New York

    Google Scholar 

  • Chaussy C, Eisenberger F, Wanner K, Forssmann B, Hepp W, Schmiedt E, Brendel W (1976) The use of shock waves for the destruction of renal calculi without direct contact. Urol Res 4:175

    Article  Google Scholar 

  • Chen YJ, Kuo YR, Yang KD, Wang CJ, Sheen Chen SM, Huang HC, Yang YJ, Yi-Chih S, Wang FS (2004) Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted bone formation of segmental defect in rats. Bone 34:466–477

    Article  Google Scholar 

  • Chen H, Brayman AA, Bailey MR, Matula TJ (2010) Blood vessel rupture by cavitation. Urol Res 38:321–326

    Article  Google Scholar 

  • Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ (2011) Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett 106:034301. doi:10.1103/PhysRevLett.106.034301

    Article  ADS  Google Scholar 

  • Chen H, Brayman AA, Evan AP, Matula TJ (2012) Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects. Ultrasound Med Biol 38:2151–2162

    Article  Google Scholar 

  • Chitnis PV, Cleveland RO (2006) Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave. J Acoust Soc Am 119:1929–1932

    Article  ADS  Google Scholar 

  • Choi MJ, Coleman AJ, Saunders JE (1993) The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter. J Phys Med Biol 38:1561–1573

    Article  Google Scholar 

  • Church CC (1989) A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J Acoust Soc Am 86:215–227

    Article  ADS  Google Scholar 

  • Church CC, Yang X (2006) A theoretical study of gas bubble dynamics in tissue. In: Atchley AA, Sparrow VW, Keolian RM (eds) Proceedings of the 17th international symposium on nonlinear acoustics, 18–22 July 2005. Pennsylvania State University, State College, PA, USA: American Institute of Physics, 2006, pp 217–224. doi:10.1063/1.2210349

  • Clark DL, Connors BA, Evan AP, Willis LR, Handa RK, Gao S (2009) Localization of renal oxidative stress and inflammatory response after lithotripsy. Br J Urol Int 103:1562–1568

    Article  Google Scholar 

  • Clark DL, Connors BA, Handa RK, Evan AP (2011) Pretreatment with low-energy shock waves reduces the renal oxidative stress and inflammation caused by high-energy shock wave lithotripsy. Urol Res 39:437–442

    Article  Google Scholar 

  • Clayman RV, Long S, Marcus M (1991) High-energy shock waves: in vitro effects. Am J Kidney Dis 17:436–444

    Article  Google Scholar 

  • Cleveland RO, McAteer JA (2007) The physics of shock wave lithotripsy. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JE, Preminger GM, Segura JW (eds) Smith’s textbook of endourology. BC Decker, Hamilton, pp 317–332

    Google Scholar 

  • Cleveland RO, McAteer JA (2012) The physics of shock wave lithotripsy. In: Smith AD, Badlani GH, Preminger GM, Kavoussi LR (eds) Smith’s textbook of endourology, 3rd edn. Wiley-Blackwell, Cichester, pp 529–558

    Google Scholar 

  • Cleveland RO, Sapozhnikov OA (2005) Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am 118:2667–2676

    Article  ADS  Google Scholar 

  • Cleveland RO, van Cauwelaert J (2005) Stone orientation and structure affect the mechanism of failure in human and artificial kidney stones subject to shock waves. In: Proceedings of the American Urological Association, San Antonio, TX, USA, 2005

    Google Scholar 

  • Cleveland RO, Lifshitz DA, Connors BA, Evan AP, Willis LR, Crum LA (1998) In vivo pressure measurements of lithotripsy shock waves in pigs. Ultrasound Med Biol 24:293–306

    Article  Google Scholar 

  • Cleveland RO, Sapozhnikov OA, Bailey MR, Crum LA (2000b) A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro. J Acoust Soc Am 107:1745–1758

    Article  ADS  Google Scholar 

  • Cleveland RO, McAteer JA, Williams JC Jr (2002) Correlation between the predicted stress field and observed spall-failure in artificial kidney stones treated by shock wave lithotripsy (ESWL) in vitro. In: Bettucci A (ed) Proceedings of the 17th International Congress on Acoustics, 2002. ICA, Rome, Italy, VII, pp 174–175

    Google Scholar 

  • Cochran S, Prausnitz M (2001) Sonoluminescence as an indicator of cell membrane disruption by acoustic cavitation. Ultrasound Med Biol 27:841–850

    Article  Google Scholar 

  • Coleman AJ, Saunders JE (1993) A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy. Ultrasonics 31:75–89

    Article  Google Scholar 

  • Coleman AJ, Saunders JE, Crum LA, Dyson M (1987a) Acoustic cavitation generated by an extracorporeal shock wave lithotripter. Ultrasound Med Biol 13:69–76

    Article  Google Scholar 

  • Coleman AJ, Choi MJ, Saunders JE, Leighton TG (1992) Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter. Ultrasound Med Biol 18:267–281

    Article  Google Scholar 

  • Coleman AJ, Whitlock M, Leighton T, Saunders JE (1993) The spatial distribution of cavitation induced acoustic emission, sonoluminescence and cell lysis in the field of a shock wave lithotripter. Phys Med Biol 38:1545–1560

    Article  Google Scholar 

  • Coleman AJ, Choi MJ, Saunders JE (1996) Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med Biol 22:1079–1087

    Article  Google Scholar 

  • Connors BA, Evan AP, Willis LR, Blomgren PM, Lingeman JE, Fineberg NS (2000) The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig. J Am Soc Nephrol 11:310–318

    Google Scholar 

  • Connors BA, Evan AP, Blomgren PM, Handa RK, Willis LR, Gao S, McAteer JA, Lingeman JE (2009b) Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. Br J Urol Int 104:1004–1008

    Article  Google Scholar 

  • Connors BA, McAteer JA, Evan AP, Blomgren PM, Handa RK, Johnson CD, Gao S, Pishchalnikov YA, Lingeman JE (2012) Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotripter. Br J Urol Int 110:1376–1385

    Article  Google Scholar 

  • Contaldo C, Högger DC, Khorrami Borozadi M, Stotz M, Platz U, Forster N, Lindenblatt N, Giovanoli P (2012) Radial pressure waves mediate apoptosis and functional angiogenesis during wound repair in ApoE deficient mice. Microvasc Res 84:24–33

    Article  Google Scholar 

  • Coralic V (2014) Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy. Dissertation, California Institute of Technology, Pasadena, CA, USA, p 109

    Google Scholar 

  • Crum LA (1979) Surface oscillations and jet development in pulsating bubbles. J Phys 40:213–227

    Google Scholar 

  • Crum LA (1988) Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J Urol 140:1587–1590

    Google Scholar 

  • Crum LA (2015) Resource Paper: sonoluminescence. J Acoust Soc Am 138:2181–2205

    Article  ADS  Google Scholar 

  • Crum LA, Fowlkers JB (1986) Acoustic cavitation generated by microsecond pulses of ultrasound. Nature 319:52–54

    Article  ADS  Google Scholar 

  • CsĂ¡szĂ¡r NBM, Angstman NB, Milz S, Sprecher CM, Kobel P, Farhat M, Furia JP, Schmitz C (2015) Radial shock wave devices generate cavitation. PLoS One 10(10), e014054. doi:10.1371/journal.pone.0140541

    Article  Google Scholar 

  • d’Agostino MC, Craig K, Tibalt E, Respizzi S (2015) Shock wave as biological therapeutic tool: from mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg 24:147–153

    Article  Google Scholar 

  • Dalecki D, Raeman CH, Child SZ, Penney DP, Mayer R, Carstensen EL (1997) The influence of contrast agents on hemorrhage produced by lithotripter fields. Ultrasound Med Biol 23:1435–1439

    Article  Google Scholar 

  • Davis TA, Stojadinovic A, Anam K, Amare M, Naik S, Peoples GE, Tadaki D, Elster EA (2009) Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn injury. Int Wound J 6:11–21

    Article  Google Scholar 

  • de Icaza-Herrera M, FernĂ¡ndez F, Loske AM (2015) Combined short and long-delay tandem shock waves to improve shock wave lithotripsy according to the Gilmore-Akulichev theory. Ultrasonics 58:53–59

    Article  Google Scholar 

  • DelacrĂ©taz G, Rink K, Pittomvils G, Lafaut JP, Vandeursen H, Boving R (1995) Importance of the implosion of ESWL-induced cavitation bubbles. Ultrasound Med Biol 21:97–103

    Article  Google Scholar 

  • Delius M (1994) Medical applications and bioeffects of extracorporeal shock waves. Shock Waves 4:55–72

    Article  ADS  Google Scholar 

  • Delius M (1997) Minimal static excess pressure minimises the effect of extracorporeal shock waves on cells and reduces it on gallstones. Ultrasound Med Biol 23:611–617

    Article  Google Scholar 

  • Delius M, Brendel W (1988) A model of extracorporeal shock-wave action: tandem action of shock-waves. Ultrasound Med Biol 14:515–518

    Article  Google Scholar 

  • Delius M, Enders G, Heine G, Stark J, Remberger K, Brendel W (1987) Biological effects of shock waves: lung hemorrhage by shock waves in dogs—pressure dependence. Ultrasound Med Biol 13:61–67

    Article  Google Scholar 

  • Delius M, Brendel W, Heine G (1988a) A mechanism of gallstone destruction by extracorporeal shock waves. Naturwissenschaften 75:200–201

    Article  ADS  Google Scholar 

  • Delius M, Heine G, Brendel W (1988c) A mechanism of gall stone destruction by extracorporeal shock waves. Gastroenterology 94:A93

    Article  Google Scholar 

  • Delius M, Denk R, Berding C, Liebich HG, Jordan M, Brendel W (1990a) Biological effects of shock waves: cavitation by shock waves in piglet liver. Ultrasound Med Biol 16:467–472

    Article  Google Scholar 

  • Delius M, Mueller W, Goetz A, Liebich HG, Brendel W (1990b) Biological effects of shock waves: kidney hemorrhage in dogs at a fast shock wave administration rate of fifteen hertz. J Lithotr Stone Dis 2:103–110

    Google Scholar 

  • Delius M, Xuan Z, Liebich H, Brendel W (1990c) Biological effects of shock waves: kidney damage by shock waves in dogs–dose dependence. Ultrasound Med Biol 14:117–122

    Article  Google Scholar 

  • Delius M, Draenert K, Al Diek Y, Draenert Y (1995a) Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone. Ultrasound Med Biol 21:1219–1225

    Article  Google Scholar 

  • Delius M, Ueberle F, Eisenmenger W (1998) Extracorporeal shock waves act by shock wave-gas bubble interaction. Ultrasound Med Biol 24:1055–1059

    Article  Google Scholar 

  • Delvecchio F, Auge BK, Munver R, Brown SA, Brizuela R, Zhong P, Preminger GM (2003) Shock wave lithotripsy causes ipsilateral renal injury remote from the focal point: the role of regional vasoconstriction. J Urol 169:1526–1529

    Article  Google Scholar 

  • Dhar NB, Thornton J, Karafa MT, Streem SB (2004) A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy. J Urol 172:2271–2274

    Article  Google Scholar 

  • Dietz-Laursonn K, Beckmann R, Ginter S, Radermacher K, de la Fuente M (2016) In-vitro cell treatment with focused shockwaves — influence of the experimental setup on the sound field and biological reaction. J Ther Ultrasound 4:10. doi:10.1186/s40349-016-0053-z

    Article  Google Scholar 

  • Ding Z, Gracewski SM (1994) Response of constrained and unconstrained bubbles to lithotripter shock waves. J Acoust Soc Am 96:3636–3644

    Article  ADS  Google Scholar 

  • Ding Z, Gracewski SM (1996) The behavior of a gas cavity impacted by a weak or strong shock wave. J Fluid Mech 309:183–209

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dreisilker U (2010c) Mechanisms of action of shock waves. In: Dreisilker U (ed) Enthesiopathies. Level10 Buchverlag, Heilbronn, pp 47–53

    Google Scholar 

  • Eisenmenger W (2001) The mechanism of stone fragmentation in ESWL. Ultrasound Med Biol 27:683–693

    Article  Google Scholar 

  • Eisenmenger W, Kaatze U (2007) Physics of stone fragmentation and new concept of wide-focus and low pressure extracorporeal shock wave lithotripsy. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitätsverlag, Göttingen, pp 199–216

    Google Scholar 

  • Eisenmenger W, Du X, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A (2002) The first clinical results of wide-focus and low-pressure ESWL. Ultrasound Med Biol 28:769–774

    Article  Google Scholar 

  • El-Damanhoury H, Shaub T, Stadtbaumer M, Kunish M, Storkel S, Schild H, Thelen M, Hohenfellner R (1991b) Parameters influencing renal damage in extracorporeal shock wave lithotripsy: an experimental study in pigs. J Endourol 5:37–40

    Article  Google Scholar 

  • Eliasson V (2007) On focusing of shock waves. Dissertation. Royal Institute of Technology, Stockholm, Sweden, 84 p

    Google Scholar 

  • Emelianov SY, Hamilton MF, Ilinskii YA, Zabolotskaya EA (2004) Nonlinear dynamics of a gas bubble in an incompressible elastic medium. J Acoust Soc Am 115:581–588

    Article  ADS  Google Scholar 

  • Evan AP, McAteer JA (1996b) Q-Effects of shock wave lithotripsy. In: Coe FL, Favus MJ, Pak CYC, Parks JH, Preminger GM (eds) Kidney stones: medical and surgical management. Lippincott Raven Publishers, Philadelphia, pp 549–570

    Google Scholar 

  • Evan AP, Willis LR (2007) Extracorporeal shock wave lithotripsy: complications. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JE, Preminger GM, Segura JW (eds) Smith’s textbook of endourology. BC Decker, Hamilton, pp 353–365

    Google Scholar 

  • Evan AP, Willis LR, Connors BA, McAteer JA, Lingeman JE (1991) Renal injury by extracorporeal shock wave lithotripsy. J Endourol 5:25–35

    Article  Google Scholar 

  • Evan AP, Willis LR, Connors BA, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Crum LA (1998a) Can SWL-induced cavitation and renal injury be separated from SWL-induced impairment of renal hemodynamics? J Acoust Soc Am 103:3037

    Article  ADS  Google Scholar 

  • Evan AP, Willis LR, Lingeman JE, McAteer JA (1998b) Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 78:1–8

    Article  Google Scholar 

  • Evan AP, Willis LR, McAteer JA, Bailey MR, Connors BA, Shao Y, Lingeman JE, Williams JC Jr, Fineberg NS, Crum LA (2002) Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in SWL. J Urol 168:1556–1562

    Article  Google Scholar 

  • Evan AP, Willis LR, Lingeman JE (2003) Shock wave lithotripsy (SWL) induces significant structural and functional changes in the kidney. J Acoust Soc Am 114:2454

    Article  ADS  Google Scholar 

  • Evan AP, McAteer JA, Connors BA, Pishchalnikov YA, Handa RK, Blomgren P, Willis LR, Williams JC Jr, Lingeman JE, Gao S (2008) Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. Br J Urol Int 101:382–388

    Article  Google Scholar 

  • Fagnan KM (2010) High-resolution finite volume methods for extracorporeal shock wave therapy [dissertation]. University of Washington Graduate School, Seattle, 161 p

    Google Scholar 

  • Favela R, GutiĂ©rrez J, Bustos J, Castaño-Tostado E, Loske AM (2005) CT attenuation value and shockwave fragmentation. J Endourol 19:5–10

    Article  Google Scholar 

  • FernĂ¡ndez F, Loske AM, Zendejas H, Castaño E, Paredes M (2005) Desarrollo de un litotriptor extracorporal mĂ¡s eficiente. Rev Mex Ingen BiomĂ©d 21:7–15 (in Spanish)

    Google Scholar 

  • FernĂ¡ndez F, FernĂ¡ndez G, Loske AM (2009a) The importance of an expansion chamber during standard and tandem extracorporeal shockwave lithotripsy. J Endourol 23:693–697

    Article  Google Scholar 

  • FernĂ¡ndez F, FernĂ¡ndez G, Loske AM (2009b) Treatment time reduction using tandem shockwaves for lithotripsy: an in vivo study. J Endourol 23:1247–1253

    Article  Google Scholar 

  • Field JE (1991) The physics of liquid impact, shock wave interactions with cavities, and the implications to shock wave lithotripsy. Phys Med Biol 36:1475–1484

    Article  Google Scholar 

  • Filipczynsky L, Wojcik J (1991) Estimation of transient temperature elevation in lithotripsy and ultrasonography. Ultrasound Med Biol 17:715–721

    Article  Google Scholar 

  • Fischer N, MĂ¼ller H, Gulhan A, Sohn M, Deutz F, Rubben H, Lutzeyer W (1988) Cavitation effects: a possible cause of tissue injury during extracorporeal shock wave lithotripsy. In: Lingeman JE (ed) Shock wave lithotripsy. Plenum, New York, pp 375–376. doi:10.1007/978-1-4757-1977-2_77

    Chapter  Google Scholar 

  • Forriol F, Solchaga L, Moreno JL, Canadel J (1994) The effect of shockwaves on mature and healing cortical bone. Int Orthop 18:325–329

    Article  Google Scholar 

  • Freund JB (2008) Suppression of shocked-bubble expansion due to tissue confinement with application to shock-wave lithotripsy. J Acoust Soc Am 123:2867–2874

    Article  ADS  Google Scholar 

  • Freund JB, Colonius T, Evan AP (2007) A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy. Ultrasound Med Biol 33:1495–1503

    Article  Google Scholar 

  • Freund JB, Shukla RK, Evan AP (2009) Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy. J Acoust Soc Am 126:2746–2756

    Article  ADS  Google Scholar 

  • Furia JP (2005) Safety and efficacy of extracorporeal shock wave therapy for chronic lateral epicondylitis. Am J Orthop 34:13–19

    Google Scholar 

  • Gaitan DF, Crum LA, Church CC, Roy RA (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166–3183

    Article  ADS  Google Scholar 

  • Gama BA, Lopatnikov SL, Gillespie JW Jr (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57:223–250

    Article  ADS  Google Scholar 

  • Gilmore FR (1952) The growth or collapse of a spherical bubble in viscous compressible liquid. California Institute of Technology, Pasadena, CA, Technical Report No 26-4, pp 1–40

    Google Scholar 

  • Ginter S, Liebler M, Steiger E, Dreyer T, Riedlinger RE (2002) Full-wave modeling of therapeutic ultrasound: nonlinear ultrasound propagation in ideal fluids. J Acoust Soc Am 111:2049–2059

    Article  ADS  Google Scholar 

  • Gleitz M (ed) (2011) Myofaszyale Syndrome und Triggerpunkte [Myofascial syndrome and trigger points]. Level10 Buchverlag, Heilbronn, 212 p, (in German)

    Google Scholar 

  • Gotte G, Amelio E, Russo S, Marlinghaus E, Musci G, Suzuki H (2002) Short-time non-enzymatic nitric oxide synthesis from L-arginine and hydrogen peroxide induced by shock waves treatment. FEBS Lett 520:153–155

    Article  Google Scholar 

  • Graff J, Richter KD, Pastor J (1988a) Effect of high energy shock waves on bony tissue. Urol Res 16:252–258

    Google Scholar 

  • Graff J, Schmidt A, Pastor J, Herberhold D, Rassweiler J, Hankemeier U (1988b) New generator for low pressure lithotripsy with the Dornier HM3: preliminary experience of two centers. J Urol 139:904–907

    Google Scholar 

  • Graff J, Richter KD, Pastor J (1989) Effect of high-energy shock waves on bony tissue. In: Walker VR, Sutton RAL, Cameron ECB, Pak CYC, Robertson WG (eds) Urolithiasis. Springer, New York, pp 997–998. doi:10.1007/978-1-4899-0873-5_315

    Chapter  Google Scholar 

  • GutiĂ©rrez J, Alvarez UM, Mues E, FernĂ¡ndez F, GĂ³mez G, Loske AM (2008) Inactivation of bacteria inoculated inside urinary stone-phantoms using intracorporeal lithotripters. Urol Res 36:67–72

    Article  Google Scholar 

  • GutiĂ©rrez-Aceves J, Mora U, Mues E, GĂ³mez G, FernĂ¡ndez F, Loske AM (2006) In vitro inactivation of Escherichia coli inside artificial kidney stones using invasive lithotripters. J Endourol 20(Suppl 1):A82

    Google Scholar 

  • Häcker A, Wess O (2010) The role of focal size in extracorporeal shock wave lithotripsy. In: Loske AM (ed) New trends in shock wave applications to medicine and biotechnology. Research Signpost, Kerala, pp 81–99

    Google Scholar 

  • Handa RK, McAteer JA, Willis LR, Pishchalnikov YA, Connors BA, Ying J, Lingeman JE, Evan AP (2007) Dual-head lithotripsy in synchronous mode: acute effect on renal function and morphology in the pig. Br J Urol Int 99:1134–1142

    Article  Google Scholar 

  • Handa RK, McAteer JA, Evan AP, Connors BA, Pishchalnikov YA, Gao S (2009b) Assessment of renal injury with a clinical dual head lithotripter delivering 240 shock waves per minute. J Urol 181:884–889

    Article  Google Scholar 

  • Handa RK, Evan AP, Connors BA, Johnson CD, Liu Z, Alloosh M, Sturek M, Evans-Molina C, Mandeville JA, Gnessin E, Lingeman JE (2014) Shock wave lithotripsy targeting of the kidney and pancreas does not increase the severity of metabolic syndrome in a porcine model. J Urol 192:1257–1265

    Article  Google Scholar 

  • Handa RK, Johnson CD, Connors BA, Evan AP, Phillips CL, Liu Z (2015a) Shock wave lithotripsy does not impair renal function in a swine model of metabolic syndrome. J Endourol 29:468–473

    Article  Google Scholar 

  • Handa RK, Liu Z, Connors BA, Alloosh M, Basile DP, Tune JD, Sturek M, Evan AP, Lingeman JE (2015b) Effect of renal shock wave lithotripsy on the development of metabolic syndrome in a juvenile swine model: a pilot study. J Urol 193:1409–1416

    Article  Google Scholar 

  • Harper JD, Dunmire B, Wang YN, Simon JC, Liggitt D, Paun M, Cunitz BW, Starr F, Bailey MR, Penniston KL, Lee FC, Hsi RS, Sorensen MD (2014) Preclinical safety and effectiveness studies of ultrasonic propulsion of kidney stones. Urology 84:484–489

    Article  Google Scholar 

  • Harper JD, Dunmire B, Bailey MR, Cunitz BW, Thiel J, His R, Lee F, Lingeman JE, Coburn M, Wessells H, Sorensen MD (2016) Results of a single center first in human feasibility trial for ultrasonic propulsion of kidney stones. J Urol 195(4 Pt 1):956–964. doi:10.1016/j.juro.2015.10.131

    Article  Google Scholar 

  • Häusler E. (1985) Physical principles of kidney stone destruction. In: Proceedings of the Third Congress of the International Society of Urology and Endoscopy; 26–30 Aug 1984, BUA Verlag Werner Steinbruck, University of Karlsruhe. Germany 1985, pp 433–435

    Google Scholar 

  • Hausner T, Pajer K, Halat G, Hopf R, Schmidhammer R, Redl H, NĂ³grĂ¡di A (2012) Improved rate of peripheral nerve regeneration induced by extracorporeal shock wave treatment in the rat. Exp Neurol 236:363–370

    Article  Google Scholar 

  • Hill DE, McDougal WS, Stephens H (1990) Physiologic and pathologic alterations associated with ultrasonically generated shock waves. J Urol 144:1531–1534

    Google Scholar 

  • Holfeld J, TepeköylĂ¼ C, Kozaryn R, Mathes W, Grimm M, Paulus P (2014a) Shock wave application to cell cultures. J Vis Exp 86, e51076. doi:10.3791/51076

    Google Scholar 

  • Holfeld J, Zimpfer D, Albrecht-Schgoer K, Stojadinovic A, Paulus P, Dumfarth J, Thomas A, Lobenwein D, TepeköylĂ¼ C, Rosenhek R, Schaden W, Kirchmair R, Aharinejad S, Grimm M (2014) Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease. J Tissue Eng Regen Med. doi:10.1002/term.1890

  • Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos Trans R Soc 213:437–456

    Article  ADS  Google Scholar 

  • Howard D, Sturtevant B (1997) In vitro study of the mechanical effects of shock-wave lithotripsy. Ultrasound Med Biol 23:1107–1122

    Article  Google Scholar 

  • Howle L, Schaeffer DG, Shearer M, Zhong P (1998) Lithotripsy: the treatment of kidney stones with shock waves. SIAM Rev Soc Ind Appl Math 40:356–371

    MathSciNet  MATH  Google Scholar 

  • Huang HH, Qureshi AA, Biundo JJ (2000) Sports and other soft tissue injuries, tendonitis, bursitis, and occupation-related syndromes. Curr Opin Rheumatol 12:150–154

    Article  Google Scholar 

  • Huang C, Holfeld J, Schaden W, Orgill D, Ogawa R (2013) Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol Med 19:555–564

    Article  Google Scholar 

  • Huber P, Debus J, Peschke P, Hahn EW, Lorenz WJ (1994) In vivo detection of ultrasonically induced cavitation by a fibre-optic technique. Ultrasound Med Biol 20:811–825

    Article  Google Scholar 

  • Hurtado F, Gutierrez J, Castaño-Tostado E, Bustos J, Mues E, Quintero M, MĂ©ndez A, Loske AM (2007) In vivo relationship between CT attenuation value and shockwave fragmentation. J Endourol 21:343–346

    Article  Google Scholar 

  • Ikeda K, Tomita K, Takayama K (1999) Application of extracorporeal shock wave on bone: preliminary report. J Trauma 47:946–950

    Article  Google Scholar 

  • Iloreta JI, Zhou Y, Sankin GN, Zhong P, Szeri AJ (2007) Assessment of shock wave lithotripters via cavitation potential. Phys Fluids 19:86103

    Article  MATH  Google Scholar 

  • Ito K, Fukumoto Y, Shimokawa H (2009) Extracorporeal shock wave therapy as a new and non-invasive angiogenic strategy. Tohoku J Exp Med 219:1–9

    Article  Google Scholar 

  • Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  Google Scholar 

  • Jaeger P, Redha F, Uhlschmid G, Hauri D (1988) Morphological changes in canine kidneys following extra-corporeal shock wave treatment. Urol Res 16:161–166

    Article  Google Scholar 

  • Jain A, Shah TK (2007) Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol 51:1680–1686

    Article  Google Scholar 

  • Janetschek G, Frauscher F, Knapp R, Höfle G, Peschel R, Bartsch G (1997) New onset hypertension after extracorporeal shock wave lithotripsy: age related incidence and prediction by intrarenal resistive index. J Urol 158:346–351

    Article  Google Scholar 

  • Johnsen E, Colonius T (2006) Implementation of WENO schemes in compressible multicomponent flow problems. J Comput Phys 219:715–732

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Johnsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shock wave lithotripsy. J Acoust Soc Am 124:2011–2020

    Article  ADS  Google Scholar 

  • Johnsen E, Colonius T (2009) Numerical simulations of non-spherical bubble collapse. J Fluid Mech 629:231–262

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kaji DM, Xie HW, Hardy BE, Sherrod A, Huffman JL (1991) The effects of extracorporeal shock wave lithotripsy on renal growth, function and arterial blood pressure in an animal model. J Urol 146:544–547

    Google Scholar 

  • Kamath V, Prosperetti A, Egolfopoulos N (1993) A theoretical study of sonoluminescence. J Acoust Soc Am 94:249–260

    Article  ADS  Google Scholar 

  • Karlsen SJ, Smevik B, Hovig T (1991) Acute morphological changes in canine kidneys after exposure to extracorporeal shockwaves. Urol Res 19:105–115

    Article  Google Scholar 

  • Kaude JV, Williams CM, Millner MR, Scott KN, Finlayson B (1985) Renal morphology and function immediately after extracorporeal shock wave lithotripsy. Am J Roentgenol 145:305–313

    Article  Google Scholar 

  • Kertzman P, Lenza M, Pedrinelli A, Ejnisman B (2015) Shockwave treatment for musculoskeletal diseases and bone consolidation: qualitative analysis of the literature. Rev Bras Ortop 50:3–8 (English Edition)

    Article  Google Scholar 

  • Kiessling MC, Milz S, Frank HG, Körbel R, Schmitz C (2015) Radial extracorporeal shock wave treatment harms developing chicken embryos. Sci Rep 5:828. doi:10.1038/srep08281

    Article  Google Scholar 

  • Klaseboer E, Khoo BC (2006) Modified Rayleigh–Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary integral methods. Eng Anal Bound Elem 30:59–71

    Article  MATH  Google Scholar 

  • Klaseboer E, Fong SW, Turangan CK, Khoo BC, Szeri AJ, Calvisi ML, Sankin GN, Zhong P (2007) Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J Fluid Mech 593:33–56

    Article  ADS  MATH  Google Scholar 

  • Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54:182–190

    Article  Google Scholar 

  • Kobayashi K, Kodama T, Takahira H (2011) Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method. Phys Med Biol 56:6421–6440

    Article  Google Scholar 

  • Kodama T, Takayama K (1998) Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy. Ultrasound Med Biol 24:723–738

    Article  Google Scholar 

  • Kodama T, Tomita Y (2000) Cavitation bubble behavior and bubble-shockwave interaction near a gelatin surface as a study of in vivo bubble dynamics. Appl Phys B 70:139–149

    Article  ADS  Google Scholar 

  • Kohri K, Uemura T, Iguchi M, Kurita T (1990) Effect of high energy shock waves on tumor cells. Urol Res 18:101–105

    Article  Google Scholar 

  • Köhrmann KU, Back W, Bensemann J, Florian J, Weber A, Kahmann F, Rassweiler J, Alken P (1994) The isolated perfused kidney of the pig: new model to evaluate shock wave-induced lesions. J Endourol 8:105–110

    Article  Google Scholar 

  • Köhrmann KU, Rassweiller JJ, Manning M, Mohr G, Henkel TO, JĂ¼nemann KL, Alken P (1995) The clinical introduction of a third generation lithotripter: Modulith SL 20. J Urol 153:1379–1383

    Article  Google Scholar 

  • Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15:495–506

    Article  ADS  Google Scholar 

  • Kredrinskii VK (1997) The role of cavitation effects in the mechanisms of destruction and explosive processes. Shock Waves 7:63–76

    Article  ADS  Google Scholar 

  • Kreider W, Crum LA, Bailey MR, Sapozhnikov OA (2011a) A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound. J Acoust Soc Am 130:3511–3530

    Article  ADS  Google Scholar 

  • Kreider W, Crum LA, Bailey MR, Sapozhnikov OA (2011b) Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles. J Acoust Soc Am 130:3531–3540

    Article  ADS  Google Scholar 

  • Krimmel J (2010) Numerical simulation of wave focusing and scattering in shock wave lithotripsy. Dissertation, California Institute of Technology, Pasadena, 122 p

    Google Scholar 

  • Kuo YR, Wang CT, Wang FS, Chiang YC, Wang CJ (2009) Extracorporeal shockwave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen 17:522–530

    Article  Google Scholar 

  • Kusnierczak D, Loew M, Brocai DR, Vettel U (2000) Effect of extracorporeal shockwave administration on biological behavior of bone cells in vitro. Z Orthop Grenzgeb 138:29–33 (in German)

    Article  Google Scholar 

  • Lauterborn W, Bolle H (1975) Experimental investigations of cavitationbubble collapse in the neighborhood of a solid boundary. J Fluid Mech 72:391–399

    Article  ADS  Google Scholar 

  • Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73:106501

    Article  ADS  Google Scholar 

  • Lauterborn W, Ohl CD (1998) The peculiar dynamics of cavitation bubbles. Appl Sci Res 58:63–76

    Article  Google Scholar 

  • Leighton TG (1994) The acoustic bubble. Academic, London

    Google Scholar 

  • Lewin PA, Chapelon JY, Mestas JL, Birer A, Cathignol D (1990) A novel method to control p+/p− ratio of the shock wave pulses used in the extracorporeal piezoelectric lithotripsy (EPL). Ultrasound Med Biol 16:473–488

    Article  Google Scholar 

  • Liebler M (2006) Modellierung der dynamischen Wechselwirkung von hochintensiven Ultraschallfeldern mit Kavitationsblasen. In: Wiesbeck W (ed) Forschungsberichte aus dem Institut fĂ¼r Höchstfrequenztechnik und Elektronik (IHE) der Universität Karlsruhe (TH), vol 48. IHE, Karlsruhe (in German)

    Google Scholar 

  • Lifshitz DA, Williams JC, Sturtevant B, Connors BA, Evan AP, McAteer JA (1997) Quantitation of shock wave cavitation damage in vitro. Ultrasound Med Biol 23:461–471

    Article  Google Scholar 

  • Lifshitz DA, Lingeman JE, Zafar FS, Hollensbe DW, Nyhuis AW, Evan AP (1998) Alterations in predicted growth rates of pediatric kidneys treated with extracorporeal shockwave lithotripsy. J Endourol 12:469–475

    Article  Google Scholar 

  • Littleton RH, Melser M, Kupin W (1989) Acute renal failure following bilateral extracorporeal shock wave lithotripsy without ureteral obstruction. In: Lingeman JE, Newman DM (eds) Shock wave lithotripsy 2: urinary and biliary lithotripsy. Plenum Press, New York, pp 197–201

    Chapter  Google Scholar 

  • Lokhandwalla M, Sturtevant B (2000) Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol 45:1923–1949

    Article  Google Scholar 

  • Lokhandwalla M, Sturtevant B (2001) Mechanical haemolysis in shockwave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields. Phys Med Biol 46:413–437

    Article  Google Scholar 

  • Lokhandwalla M, McAteer JA, Williams JC Jr, Sturtevant B (2001) Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear. Phys Med Biol 46:1245–1264

    Article  Google Scholar 

  • Loske AM (2010) The role of energy density and acoustic cavitation in shock wave lithotripsy. Ultrasonics 50:300–305

    Article  Google Scholar 

  • Loske AM, Prieto FE (1996) Improving underwater shock wave focusing efficiency. In: Pak CYC, Resnick MI, Preminger GM (eds) Urolithiasis. Millet The Printer, Dallas, pp 401–402

    Google Scholar 

  • Loske AM, Prieto FE (2001) Dual-phase reflectors for extracorporeal shock wave lithotripsy. Phys Med 17:141–149

    Google Scholar 

  • Loske AM, Prieto FE, FernĂ¡ndez F, van Cauwelaert J (2002b) Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. J Phys Med Biol 47:3945–3957

    Article  Google Scholar 

  • Loske AM, Prieto FE, van Cauwelaert J, FernĂ¡ndez F (2002c) Piezoelectric tandem shock wave generation for extracorporeal shock wave lithotripters. Phys Med 18:7–14

    Google Scholar 

  • Loske AM, Prieto FE, GutiĂ©rrez J, Zendejas H, Saita A, VĂ©lez E (2004b) Evaluation of a bifocal reflector on a clinical lithotripter. J Endourol 18:7–16

    Article  Google Scholar 

  • Loske AM, FernĂ¡ndez F, Zendejas H, Paredes M, Castaño-Tostado E (2005) Dual pulse shock wave lithotripsy: in vitro and in vivo study. J Urol 174:2388–2392

    Article  Google Scholar 

  • Loske AM, Campos-Guillen J, FernĂ¡ndez F, Castaño-Tostado E (2011) Enhanced shock wave-assisted transformation of Escherichia coli. Ultrasound Med Biol 37:502–510

    Article  Google Scholar 

  • Loske AM, FernĂ¡ndez F, Magaña-OrtĂ­z D, Coconi-Linares N, OrtĂ­z-VĂ¡zquez E, GĂ³mez-Lim MA (2014) Tandem shock waves to enhance genetic transformation of Aspergillus niger. Ultrasonics 54:1656–1662

    Article  Google Scholar 

  • Lukes P, Sunka P, Hoffer P, Stelmashuk V, Pouckova P, Zadinova M, Zeman J, Dibdiak L, Kolarova H, Tomankova K, Binder S, Benes J (2014) Focused tandem shock waves in water and their potential application in cancer treatment. Shock Waves 24:51–57

    Article  ADS  Google Scholar 

  • Lukes P, FernĂ¡ndez F, GutiĂ©rrez-Aceves J, FernĂ¡ndez E, Alvarez UM, Sunka P, Loske AM (2016) Tandem shock waves in medicine and biology: a review of potential applications and successes. Shock Waves 26:1–23

    Article  ADS  Google Scholar 

  • Maglinte DD, Graffis R, Jordan L, Chua GT, Johnson AC, Crossin J (1991) Extracorporeal shock wave lithotripsy of gallblader stones: a pessimistic view. Radiology 178:29–32

    Article  Google Scholar 

  • Maier M, Milz S, Wirtz DC, Rompe JD, Schmitz C (2002) Basic research of applying extracorporeal shockwaves on the musculoskeletal system. An assessment of current status. Orthopade 31:667–677 (in German)

    Article  Google Scholar 

  • Maier M, Averbeck B, Milz S, Refior HJ, Schmitz C (2003) Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin Orthop Relat Res 406:237–245

    Article  Google Scholar 

  • Maker V, Layke J (2004) Gastrointestinal injury secondary to extracorporeal shock wave lithotripsy: a review of the literature since its inception. J Am Coll Surg 198:128–135

    Article  Google Scholar 

  • Mariotto S, Cavalieri E, Amelio E, Ciampa AR, de Prati AC, Marlinghaus E, Russo S, Suzuki H (2005) Extracorporal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric Oxide 12:89–96

    Article  Google Scholar 

  • Mariotto S, de Prati AC, Cavalieri E, Amelio E, Marlinghaus E, Suzuki H (2009) Extracorporeal shock wave therapy in inflammatory diseases: molecular mechanism that triggers anti-inflammatory action. Curr Med Chem 16:2366–2372

    Article  Google Scholar 

  • Marszalek M, Berger I, Madersbacher S (2009) Low-energy extracorporeal shock wave therapy for chronic pelvic pain syndrome: finally, the magic bullet? Eur Urol 56:425–426

    Article  Google Scholar 

  • Matlaga BR, McAteer JA, Connors BA, Handa RK, Evan AP, Williams JC, Lingeman JE, Willis LR (2008) Potential for cavitation-mediated tissue damage in shockwave lithotripsy. J Endourol 22:121–126

    Article  Google Scholar 

  • Matula TJ, Roy RA, Mourad PD (1997) Optical pulse width measurements of sonoluminescence in cavitation-bubble fields. J Acoust Soc Am 101:1994–2002

    Article  ADS  Google Scholar 

  • Matula TJ, Hallaj IM, Cleveland RO, Crum LA, Moss WC, Roy RA (1998) The acoustic emissions from single-bubble sonoluminescence. J Acoust Soc Am 103:1377–1382

    Article  ADS  Google Scholar 

  • Matula TJ, Hilmo PR, Bailey MR, Crum LA (2002a) In vitro sonoluminescence and sonochemistry studies with an electrohydraulic shock-wave lithotripter. Ultrasound Med Biol 28:1199–1207

    Article  Google Scholar 

  • Matula TJ, Hilmo PR, Storey BD, Szeri AJ (2002b) Radial response of individual bubbles subjected to shock wave lithotripsy pulses in vitro. Phys Fluids 14:913–921

    Article  ADS  Google Scholar 

  • Maxwell AD, Sapozhnikov OA, Bailey MR, Crum LA, Xu Z, Fowlkes B, Cain C, Khokhlova VA (2012) Disintegration of tissue using high intensity focused ultrasound: two approaches that utilize shock waves. Acoust Today 8:24–37

    Article  Google Scholar 

  • Mayer R, Schenk E, Child S, Norton S, Cox C, Hartman C, Cox C, Carstensen E (1990) Pressure threshold for shock wave induced renal hemorrhage. J Urol 144:1505–1509

    Google Scholar 

  • McAteer JA, Evan AP (2008) The acute and long-term adverse effects of shock wave lithotripsy. Semin Nephrol 28:200–213

    Article  Google Scholar 

  • McAteer JA, Williams JC Jr, Cleveland RO, van Cauwelaert J, Bailey MR, Lifshitz DA, Evan AP (2005b) Ultracal-30 gypsum artificial stones for research on the mechanisms of stone breakage in shock wave lithotripsy. Urol Res 33:429–434

    Article  Google Scholar 

  • McAteer JA, Evan AP, Williams JC, Lingeman JE (2009) Treatment protocols to reduce renal injury during shock wave lithotripsy. Curr Opin Urol 19:192–195

    Article  Google Scholar 

  • McClure SR, VanSickle D, White MR (2004b) Effects of extracorporeal shock wave therapy on bone. Vet Surg 33:40–48

    Article  Google Scholar 

  • Meirer R, Brunner A, Deibl M, Oehlbauer M, Piza-Katzer H, Kamelger FS (2007) Shock wave therapy reduces necrotic flap zones and induces VEGF expression in animal epigastric skin flap model. J Reconstr Microsurg 23:231–236

    Article  Google Scholar 

  • Miao H, Gracewski SM, Dalecki D (2008) Ultrasonic excitation of a bubble inside a deformable tube: implications for ultrasonically induced hemorrhage. J Acoust Soc Am 124:2374–2384

    Article  ADS  Google Scholar 

  • Miller DL, Song J (2002) Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfer in vivo. Ultrasound Med Biol 28:1343–1348

    Article  Google Scholar 

  • Moralli MR, Caldwell NJ, Patil PV, Goldstein SA (2000) An in vivo model for investigations of mechanical signal transduction in trabecular bone. J Bone Miner Res 15:1346–1353

    Article  Google Scholar 

  • Morgan TR, Laudone UP, Heston WPW, Zeitz L, Fair WR (1988) Free radical production by high energy shock waves—comparison with ionizing radiation. J Urol 139:186–189

    Google Scholar 

  • MĂ¼ller M (1987) Experimental investigations on focusing of weak spherical shock waves in water by shallow ellipsoidal reflectors. Acustica 64:85–93

    Google Scholar 

  • Munver R, Delvecchio FC, Kuo RL, Brown SA, Zhong P, Preminger GM (2002) In vivo assessment of free radical activity during shock wave lithotripsy using a microdialysis system: the renoprotective action of allopurinol. J Urol 167:327–334

    Article  Google Scholar 

  • NaudĂ© CF, Ellis AT (1961) On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary. J Basic Eng 83:648–654

    Article  Google Scholar 

  • Neisius D, Gebhardt T, Seitz G, Ziegler M (1989a) Histological examination and laboratory analysis of the liver and gallbladder after application of extracorporeal shock waves to the gallbladder with the Piezolith 2200. J Lithotr Stone Dis 1:26–33

    Google Scholar 

  • Neisius D, Seitz G, Gebhardt T, Ziegler M (1989b) Dose-dependent influence on canine renal morphology after application of extracorporeal shock waves with Wolf Piezolith. J Endourol 3:337–345

    Article  Google Scholar 

  • Neucks JS, Pishchalnikov YA, Zancanaro AJ, VonDerHaar JN, Williams JC Jr, McAteer JA (2008) Improved acoustic coupling for shock wave lithotripsy. Urol Res 36:61–66

    Article  Google Scholar 

  • Nyame YA, De S, Sarkissian C, Brown R, Kartha G, Babbar P, Monga M (2015) Kidney stone models for in vitro lithotripsy research: a comprehensive review. J Endourol 29:1106–1109

    Article  Google Scholar 

  • Ogden JA, Alvarez RG, Levitt R, Marlow M (2001a) Shock wave therapy (orthotripsy) in musculoskeletal disorders. Clin Orthop Relat Res 387:22–40

    Article  Google Scholar 

  • Ogden JA, TĂ³th-Kischkat A, Schultheiss R (2001b) Principles of shock wave therapy. Clin Orthop Relat Res 387:8–17

    Article  Google Scholar 

  • Ohl CD, Ikink R (2003) Shock-wave-induced jetting of micron-size bubble. Phys Rev Lett 90:214502-1–214502-4

    Article  ADS  Google Scholar 

  • Ohl CD, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Philos Trans A Roy Soc 357:269–294

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ohtori S, Inoue G, Mannoji C, Saisu T, Takahashi K, Mitsuhashi S, Wada Y, Takahashi K, Yamagata M, Moriya H (2001) Shock wave application to rat skin induces degeneration and reinnervation of sensory nerve fibers. Neurosci Lett 315:57–60

    Article  Google Scholar 

  • Parsons JE, Cain CA, Abrams GD, Fowlkes JB (2006a) Pulsed cavitational ultrasound therapy for controlled tissue homogenization. Ultrasound Med Biol 32:115–129

    Article  Google Scholar 

  • Parsons JE, Cain CA, Fowlkes JB (2006b) Cost-effective assembly of a basic fiberoptic hydrophone for measurement of high amplitude therapeutic ultrasound fields. J Acoust Soc Am 119:1432–1440

    Article  ADS  Google Scholar 

  • Pearle MS (2002) Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. Int Braz J Urol 28:472–473

    Google Scholar 

  • Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116

    Article  ADS  MATH  Google Scholar 

  • Philipp A, Delius M, Scheffczyk C, Vogel A, Lauterborn W (1993) Interaction of lithotripter-generated shock waves with air bubbles. J Acoust Soc Am 93:2496–2509

    Article  ADS  Google Scholar 

  • Pierre SA, Ferrandino MN, Simmons WN, Leitao VA, Sankin GN, Qin J, Preminger GM, Cocks FH, Zhong P (2008) Improvement in stone comminution of modern electromagnetic lithotripters by tandem pulse sequence. J Urol 179:590

    Article  Google Scholar 

  • Piper NY, Dalrymple N, Bishoff JT (2001) Incidence of renal hematoma formation after ESWL using Dornier Doli-S lithotripter. J Urol 15(Suppl):S377 (abstract)

    Google Scholar 

  • Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Williams JC, Cleveland RO, Colonius T, Crum LA, Evan AP, McAteer JA (2003) Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J Endourol 17:435–446

    Article  Google Scholar 

  • Plesset M (1949) The dynamics of cavitation bubbles. J Appl Mech 16:228–231

    Google Scholar 

  • Plesset M, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9:145–185

    Article  ADS  MATH  Google Scholar 

  • Prieto FE, Loske AM (1999) Bifocal reflector for electrohydraulic lithotripters. J Endourol 13:65–75

    Article  Google Scholar 

  • Prosperetti A (1984) Bubble phenomena in sound fields: part one. Ultrasonics 22:69–77

    Article  Google Scholar 

  • Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part 1. First-order theory. J Fluid Mech 168:457–478

    Article  ADS  MATH  Google Scholar 

  • Raeman CH, Child SZ, Dalecki D, Mayer R, Parker KJ, Carstensen EL (1994) Damage to murine kidney and intestine from exposure to the fields of a piezoelectric lithotripter. Ultrasound Med Biol 20:589–594

    Article  Google Scholar 

  • Randazzo RF, Chaussy CG, Fuchs GJ, Bhuta SM, Lovrekovich H, deKernion JB (1988) The in vitro and in vivo effects of extracorporeal shock waves on malignant cells. Urol Res 16:419–426

    Article  Google Scholar 

  • Rassweiler J, Köhrmann KU, Back W, Fröhner S, Raab M, Weber A, Kahman F, Marlinghaus E, JĂ¼neman KP, Alken P (1993) Experimental basis of shock wave-induced trauma in the model of the canine kidney. World J Urol 11:43–53

    Article  Google Scholar 

  • Razvi H, Fuller A, Nott L, MĂ©ndez-Probst CE, Leistner R, Foell K, DavĂ© S, Denstedt JD (2012) Risk factors for perinephric hematoma formation after shockwave lithotripsy: a matched case-control analysis. J Endourol 26:1478–1482

    Article  Google Scholar 

  • Recker F, Ruebben H, Bex A, Constantinides C (1989) Morphologic changes following ESWL in the rat kidney. Urol Res 17:229–233

    Google Scholar 

  • Rink K, DelacrĂ©taz G, Pittomvils G, Boving R, Lafaut JP (1994) Incidence of cavitation in the fragmentation process of extracorporeal shock wave lithotripters. Appl Phys Lett 64:2596–2598

    Article  ADS  Google Scholar 

  • Robinson DE, Kossoff G (1978) Pulse echo visualization. In: Fry FJ (ed) Ultrasound: its applications in medicine and biology, vol 3. Elsevier, Amsterdam, pp 593–596

    Google Scholar 

  • Roessler W, Steinbach P, Nicolai H, Hofstädter F, Wielenad WF (1993) Effects of high energy shock waves on the viable human kidney. Urol Res 21:273–277

    Article  Google Scholar 

  • Rompe JD, Kirkpatrick CJ, KĂ¼llmer K, Schwitalle M, Krischek O (1998b) Dose-related effects of shock waves on rabbit tendo Achilles: a sonographic and histological study. J Bone Joint Surg Br Vol 80:546–552

    Article  Google Scholar 

  • Rubin JI, Arger PH, Pollack HM, Banner MP, Coleman BG, Mintz MC, VanArsdalen KN (1987) Kidney changes after extracorporeal shock wave lithotripsy: CT evaluation. Radiology 162:21–24

    Article  Google Scholar 

  • Russo P, Stephenson RA, Mies C, Huryk R, Heston WD, Melamed MR, Fair WR (1986) High energy shock waves suppress tumor growth in vitro and in vivo. J Urol 135:626–628

    Google Scholar 

  • Ryan PC, Jones BJ, Kay EW, Nowlan P, Kiely EA, Gaffney EF, Butler MR (1991) Acute and chronic bioeffects of single and multiple doses of piezoelectric shock waves (EDAP LT.01). J Urol 145:399–404

    Google Scholar 

  • Sackmann M, Delius M, Sauerbruch T, Holl J, Weber W, Ippisch E, Hagelauer U, Wess O, Hepp W, Brendel W, Paumgartner G (1988) Shock-wave lithotripsy of gallbladder stones. The first 175 patients. N Engl J Med 318:393–397

    Article  Google Scholar 

  • Sankin GN, Simmons WN, Zhu SL, Zhong P (2005) Shock wave interaction with laser-generated single bubbles. Phys Rev Lett 95:034501-1–034501-4

    Article  ADS  Google Scholar 

  • Sansone V, d’Agostino MC, Bonora C, Sizzano F, De Girolamo L, Romeo P (2012) Early angiogenic response to shock waves in a three-dimensional model of human microvascular endothelial cell culture (HMEC-1). J Biol Regul Homeost Agents 26:29–37

    Google Scholar 

  • Sapozhnikov OA, Bailey MR (2013) Radiation force on an elastic sphere in an acoustic beam of arbitrary structure. J Acoust Soc Am 133:661–676

    Article  ADS  Google Scholar 

  • Sapozhnikov OA, Bailey MR, Crum LA, Miller NA, Cleveland RO, Pishchalnikov YA, Pishchalnikova IV, McAteer JA, Connors BA, Blomgren PM, Evan AP (2001) Ultrasound guided localized detection of cavitation during lithotripsy in pig kidney in vivo. Proc IEEE Ultrason Symp 2:1437–1440

    Google Scholar 

  • Sapozhnikov OA, Khokhlova VA, Bailey MR, Williams JC, McAteer JA, Cleveland RO, Crum LA (2002) Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. J Acoust Soc Am 112:1183–1195

    Article  ADS  Google Scholar 

  • Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR (2007) A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 121:1190–1202

    Article  ADS  Google Scholar 

  • Sarica K, Kosar A, Yaman O, BedĂ¼k Y, Durak I, GögĂ¼s O, Kavukcu M (1996) Evaluation of ischemia after ESWL. Detection free oxygen radical scavenger enzymes in renal parenchyma subjected to high-energy shock waves. Urol Int 57:221–223

    Article  Google Scholar 

  • Sass W, Braunlich M, Dreyer H, Matura E, Folberth W, Priesmeyer H, Seifert J (1991) The mechanism of stone disintegration by shock waves. Ultrasound Med Biol 17:239–243

    Article  Google Scholar 

  • Sathishkumar S, Meka A, Dawson D, House N, Schaden W, Novak MJ, Ebersole JL, Kesavalu L (2008) Extracorporeal shock wave therapy induces alveolar bone regeneration. J Dent Res 87:687–691

    Article  Google Scholar 

  • Sauerbruch T, Stern M (1989) Study group for shock-wave lithotripsy of bile duct stones. Fragmentation of bile duct stones by extracorporeal shock waves. A new appraoch to biliary calculi after failure of routine endoscopic measures. Gastroenterology 96:146–152

    Article  Google Scholar 

  • Schelling G, Delius M, Gschwender M, Grafe P, Gambihler S (1994) Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism. Biophys J 66:133–140

    Article  Google Scholar 

  • Schleberger R, Senge T (1992) Non-invasive treatment of long-bone pseudarthrosis by shockwaves (ESWL). Arch Orthop Trauma Surg 111:224–227

    Article  Google Scholar 

  • Seidl M, Steinbach P, Wörle K, Hofstädter F (1994) Induction of stress fibres and intercellular gaps in human vascular endothelium by shock-waves. Ultrasonics 32:397–400

    Article  Google Scholar 

  • Shah A, Owen NR, Lu W, Cunitz BW, Kaczkowski PJ, Harper JD, Bailey MR, Crum LA (2010b) Novel ultrasound method to reposition kidney stones. Urol Res 38:491–495

    Article  Google Scholar 

  • Shah A, Harper JD, Cunitz BW, Wang YN, Paun M, Simon JC, Lu W, Kaczkowski PJ, Bailey MR (2012) Focused ultrasound to expel calculi from the kidney. J Urol 187:739–743

    Article  Google Scholar 

  • Shao YZ, Connors BA, Evan AP, Willis LR, Lifshitz DA, Lingeman JE (2003) Morphological changes induced in the pig kidney by extracorporeal shock wave lithotripsy: nephron injury. Anat Rec A 275A:979–989

    Article  Google Scholar 

  • Shima A, Nakajima K (1977) Collapse of a non-spherical bubble attached to a rigid wall. J Fluid Mech 80:369–391

    Article  ADS  MATH  Google Scholar 

  • Simon JC, Sapozhnikov OA, Khokhlova VA, Wang Y, Crum LA, Bailey MR (2012) Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound. Phys Med Biol 57:8061–8078

    Article  Google Scholar 

  • Singh V, Agarwal R (1990) Mechanical and ultrasonic parameters of kidney stones. J Lithotr Stone Dis 2:117–123

    Google Scholar 

  • Sokolov DL, Bailey MR, Crum LA (2001) Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J Acoust Soc Am 110:1685–1695

    Article  ADS  Google Scholar 

  • Sokolov DL, Bailey MR, Crum LA (2003) Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro. Ultrasound Med Biol 29:1045–1052

    Article  Google Scholar 

  • Sorensen MD, Bailey MR, Hsi RS, Cunit BW, Simon JC, Wang Y-N, Dunmire BL, Paun M, Starr F, Lu W, Evan AP, Harper JD (2013) Focused ultrasonic propulsion of kidney stones: review and update of preclinical technology. J Endourol 27:1183–1186

    Article  Google Scholar 

  • Speed CA (2004) Extracorporeal shock-wave therapy in the management of chronic soft-tissue conditions. J Bone Joint Surg Br Vol 86:165–171

    Article  Google Scholar 

  • Suhr F, Bloch W (2012) Mechanotransduction - role in tissue adaptation. Shockwave Int Soc Med Schockwave Treat 8:14–16

    Google Scholar 

  • Suhr F, Delhasse Y, Bungartz G, Schmidt A, Pfannkuche K, Bloch W (2013) Cell biological effects of mechanical stimulations generated by focused extracorporeal shock wave applications on cultured human bone marrow stromal cells. Stem Cell Res 11:951–964

    Article  Google Scholar 

  • Sukubo NG, Tibalt E, Respizzi S, Locati M, d’Agostino MC (2015) Effect of shock waves on macrophages: a possible role in tissue regeneration and remodeling. Int J Surg 24:124–130

    Article  Google Scholar 

  • Sun D, Junger WG, Yuan C, Zhang W, Bao Y, Qin D, Wang C, Tan L, Qi B, Zhu D, Zhang X, Yu T (2013) Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors. Stem Cells 31:1170–1180

    Article  Google Scholar 

  • Takahashi N, Wada Y, Ohtori S, Saisu T, Moriya H (2003) Application of shock waves to rat skin decreases calcitonin gene-related peptide immunoreactivity in dorsal root ganglion neurons. Auton Neurosci 107:81–84

    Article  Google Scholar 

  • Tanguay M, Colonius T (2001) Numerical simulation of bubble cavitation flow in shock wave lithotripsy. In: CAV2001, Fourth international symposium on cavitation, California Institute of Technology, Pasadena, USA, 9 pp. CAV2001:Session B6.004, 20–23 June 2001

    Google Scholar 

  • Tanguay M, Colonius T (2003) Progress in modeling and simulation of shock wave lithotripsy (SWL). In: Proceedings of the CAV2003. Fifth international symposium on cavitation. New utilization of cavitation in biomedical, environment and material processing fields. Osaka University, Osaka, Japan, OS-2-1-010, 1–4 Nov 2003

    Google Scholar 

  • Tham LM, Lee HP, Lu C (2007) Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotripter shock waves: a numerical analysis. J Urol 178:314–319

    Article  Google Scholar 

  • Tischer T, Milz S, Weiler C, Pautke C, Hausdorf J, Schmitz C, Maier M (2008) Dose-dependent new bone formation by extracorporeal shock wave application on the intact femur of rabbits. Eur Surg Res 41:44–53

    Article  Google Scholar 

  • Torr GR (1984) The acoustic radiation force. Am J Phys 52:402–408

    Article  ADS  Google Scholar 

  • Tu J, Matula TJ, Bailey MR, Crum LA (2007) Evaluation of a shock wave induced cavitation activity both in vitro and in vivo. Phys Med Biol 52:5933–5944

    Article  Google Scholar 

  • Turangan CK, Jamaluddin AR, Ball GJ, Leighton TG (2008) Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. J Fluid Mech 598:1–25

    Article  ADS  MATH  Google Scholar 

  • Ueberle F (2011) Application of shock waves and pressure pulses in medicine. In: Kramme R, Hoffmann KP, Pozos RS (eds) Springer handbook of medical technology. Springer-Verlag, Berlin, Heidelberg, pp 641–675

    Chapter  Google Scholar 

  • Vakil N (1991) Relationship of model stone properties to fragmentation mechanisms during lithotripsy. J Lithotr Stone Dis 4:304–310

    Google Scholar 

  • Vakil N, Everbach EC (1993) Transient acoustic cavitation in gallstone fragmentation: a study of gallstones fragmented in vivo. Ultrasound Med Biol 19:331–342

    Article  Google Scholar 

  • Valchanou VD, Michailov P (1991) High energy shockwaves in the treatment of delayed and nonunion of fractures. Int Orthop 15:181–184

    Article  Google Scholar 

  • van Arsdalen KN, Kurzweil S, Smith J, Levin RM (1991) Effect of lithotripsy on immature rabbit bone and kidney development. J Urol 146:213–216

    Google Scholar 

  • van Leeuwen TG, Meertens JH, Velema E, Post MJ, Borst C (1993) Intraluminal vapor bubble induced by excimer laser-pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit. Circulation 87:1258–1263

    Article  Google Scholar 

  • Väterlein N, LĂ¼ssenhop S, Hahn M, Delling G, Meiss AL (2000) The effect of extracorporeal shock waves on joint cartilage—an in vivo study in rabbits. Arch Orthop Trauma Surg 120:403–406

    Article  Google Scholar 

  • Vetrano M, d’Alessandro F, Torrisi MR, Ferretti A, Vulpiani MC, Visco V (2011) Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes. Knee Surg Sports Traumatol Arthrosc 19:2159–2168

    Article  Google Scholar 

  • Vlaisavljevich E, Maxwell A, Warnez M, Johnsen E, Cain CA, Xu Z (2014) Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties. IEEE Trans Ultrason Ferroelectr Freq Control 61:341–351

    Article  Google Scholar 

  • Vogel A, Lauterborn W (1988) Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J Acoust Soc Am 84:719–731

    Article  ADS  Google Scholar 

  • Vona DF, Miller MW, Maillie HD, Raeman CH (1995) A test of the hypothesis that cavitation at the focal area of an extracorporeal shock wave lithotripter produces far ultraviolet and soft X-ray emissions. J Acoust Soc Am 98:706–711

    Article  ADS  Google Scholar 

  • Walton AJ, Reynolds GT (1984) Sonoluminescence. Adv Phys 33:595–660

    Article  ADS  Google Scholar 

  • Wan M, Feng Y, ter Haar G (eds) (2015) Cavitation in biomedicine: principles and techniques. Springer Science and Business Media, Heidelberg, New York, London

    Google Scholar 

  • Wang CJ (2003) An overview of shock wave therapy in musculoskeletal disorders. Chang Gung Med J 26:220–232

    Google Scholar 

  • Wang CJ (2012) Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 7:11. doi:10.1186/1749-799X-7-11

    Article  ADS  Google Scholar 

  • Wang YH, Grenabo L, Hedelin H, Pettersson S, Wikholm G, Zachrisson F (1993) Analysis of stone fragility in vitro and in vivo with piezoelectric shock waves using the EDAP LT-01. J Urol 149:699–702

    Google Scholar 

  • Wang ZQ, Pecha R, Gompf B, Eisenmenger W (1999b) Single bubble sonoluminescence: investigation of the emitted pressure wave with a fiber optic probe hydrophone. Phys Rev E 59:1777–1780

    Article  ADS  Google Scholar 

  • Wang FS, Wang CJ, Huang HJ, Chung H, Chen RF, Yang KD (2001d) Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun 287:648–655

    Article  Google Scholar 

  • Wang CJ, Huang HY, Pai CH (2002a) Shock wave enhances neovascularization at the tendon-bone junction. J Foot Ankle Surg 41:16–22

    Article  Google Scholar 

  • Wang SJ, Yip MC, Hsu YS, Lai KG, Wang SY (2002c) The modulus of toughness of urinary calculi. J Biomech Eng 124:133–134

    Article  Google Scholar 

  • Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, Yang LC (2003a) Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res 21:984–989

    Article  Google Scholar 

  • Wang FS, Yang KD, Kuo YR, Wang CJ, Huang HC, Chen YR (2003b) Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 32:387–396

    Article  Google Scholar 

  • Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, Sun YC, Huang HC, Yang YJ, Yang KD (2004a) Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 279:10331–10337

    Article  Google Scholar 

  • Wang L, Qin L, Lu H, Cheung W, Yang H, Wong W, Chan K, Leung K (2008a) Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing. Am J Sports Med 36:340–347

    Article  Google Scholar 

  • Wang N, Tytell JD, Ingber DE (2009d) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82

    Article  Google Scholar 

  • Weber C, Moran ME, Braun EJ, Drach GW (1992) Injury of rat renal vessels following extracorporeal shock wave treatment. J Urol 147:476–481

    Google Scholar 

  • Weinstein JN, Wroble RR, Loening S (1986) Revision total joint arthrosplaty facilitated by extracorporeal shock wave lithotripsy: a case report. Iowa Orthop J 6:121–124

    Google Scholar 

  • Wendt-Nordahl G, Krombach P, Hannak D, Häcker A, Michel MS, Alken P, Knoll T (2007) Prospective evaluation of acute endocrine pancreatic injury as collateral damage of shock wave lithotripsy for upper urinary tract stones. Br J Urol Int 100:1339–1343

    Article  Google Scholar 

  • Wess O (2004) Physikalische Grundlagen der extrakorporalen Stosswellentherapie. J Mineralstoffwechsel 4:7–18 (in German)

    Google Scholar 

  • Wess O (1984) Stosswellenreflektor. European Patent EP 0108190 A2, 16 May 1984, Int Cl G10K11/28, A61B17/22, A61B17/225

    Google Scholar 

  • Whelan JP, Finlayson B (1988) An experimental model for the systematic investigation of stone fracture by extracorporeal shock wave lithotripsy. J Urol 140:395–400

    Google Scholar 

  • Whitham GB (1959) On the propagation of shock waves through regions of non-uniforms area or flow. J Fluid Mech 2:337–360

    MathSciNet  MATH  Google Scholar 

  • Wijerathne MLL, Hori M, Sakaguchi H, Oguni K (2010) 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy. IOP Conf Ser Mater Sci Eng 10(1):012120. doi:10.1088/1757-899X/10/1/012120

    Article  Google Scholar 

  • Wiksell H, Kinn AC (1995) Implications of cavitation phenomena for shot intervals in extracorporeal shockwave lithotripsy. Br J Urol 75:720–723

    Article  Google Scholar 

  • Williams JC Jr, Rietjens DL, Zarse CA, McAteer JA (2002) Breakage of membrane vesicles by shock waves is independent of cavitation. In: Bettucci A (ed) Proceedings of the 17th international congress on acoustics, vol VII, Shock waves in medicine and lithotripsy, ICA, Rome, Italy, pp 182–183

    Google Scholar 

  • Williams JC Jr, Woodward JF, Stonehill MA, Evan AP, McAteer JA (1999) Cell damage by lithotripter shock waves at high pressure to preclude cavitation. Ultrasound Med Biol 25:1445–1449

    Article  Google Scholar 

  • Willis LR, Evan AP, Connors BA, Fineberg NS, Lingeman JE (1996) Effects of extracorporeal shock wave lithotripsy to one kidney on bilateral glomerular filtration rate and PAH clearance in minipigs. J Urol 156:1502–1506

    Article  Google Scholar 

  • Willis LR, Evan AP, Connors BA, Blomgren P, Fineberg NS, Lingeman JE (1999) Relationship between kidney size renal injury, and renal impairment induced by shock wave lithotripsy. J Am Soc Nephrol 10:1753–1762

    Google Scholar 

  • Woodruff R, Kandel L (1987) Effect of ESWL on the kidney and adjacent tissue. In: Kandel L (ed) State of the art: extracorporeal shock wave lithotripsy. Futura Publishing Company, Mount Kisco, pp 29–36

    Google Scholar 

  • Xi XF, Zhong P (2000) Improvement of stone fragmentation during shock wave lithotripsy using a combined EH/PEAA shock-wave generator—in vitro experiments. Ultrasound Med Biol 26:457–467

    Article  Google Scholar 

  • Xi X, Zhong P (2001) Dynamic photoeleastic study of the transient stress field in solids during shock wave lithotripsy. J Acoust Soc Am 109:1226–1239

    Article  ADS  Google Scholar 

  • Xu Z, Ludomirsky A, Eun LY, Hall TL, Tran BC, Fowlkes JB, Cain CA (2004) Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelectr Freq Control 51:726–736

    Article  Google Scholar 

  • Yang X, Church CC (2005) A model for the dynamics of gas bubbles in soft tissue. J Acoust Soc Am 118:3595–3606

    Article  ADS  Google Scholar 

  • Ye T, Bull JL (2006) Microbubble expansion in a flexible tube. J Biomech Eng 128:554–563

    Article  Google Scholar 

  • Young FR (1999) Cavitation. Imperial College Press, London

    Book  Google Scholar 

  • Yu T, Junger WG, Yuan C, Jin A, Zhao Y, Zheng X, Zeng Y, Liu J (2010) Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation. Am J Physiol Cell Physiol 298:C457–C464

    Article  Google Scholar 

  • Yuan F, Sankin G, Zhong P (2011) Dynamics of tandem bubble interaction in a microfluidic channel. J Acoust Soc Am 130:3339–3346

    Article  ADS  Google Scholar 

  • Zhang YX, Chen JQ, Zeng Z, Wei CX, Wen C (2009) Numerical simulation of the evolution of focusing shock wave in extracorporeal shock wave lithotripsy by using space-time conservation element and solution element scheme. In: Yao ZH, Yuan MW (eds) Computational mechanics, proceedings of the international symposium on computational mechanics, Springer Verlag, Beijing, China, Berlin, Heidelberg, p 258, July 2007, 1 Aug 30 http://link.springer.com/chapter/10.1007/978-3-540-75999-7_58. Accessed 28 June 2016

  • Zhong P (2013) Shock wave lithotripsy. In: Delale CF (ed) Bubble dynamics and shock waves. Springer-Verlag, Heidelberg, Berlin, pp 291–338. doi:10.1007/978-3-642-34297-4_10

    Chapter  Google Scholar 

  • Zhong P, Zhou Y (2001) Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments. J Acoust Soc Am 110:3283–3291

    Article  ADS  Google Scholar 

  • Zhong P, Chuong CJ, Preminger GM (1993) Propagation of shock waves in elastic solids caused by the impact of cavitation microjets. II Application to extracorporeal shock wave lithotripsy. J Acoust Soc Am 94:29–36

    Article  ADS  Google Scholar 

  • Zhong P, Cioanta I, Cocks FH, Preminger GM (1997a) Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy. J Acoust Soc Am 101:2940–2950

    Article  ADS  Google Scholar 

  • Zhong P, Cocks FR, Cioanta I, Preminger GM (1997b) Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shockwave lithotripsy. J Urol 158:2323–2328

    Article  Google Scholar 

  • Zhong P, Cioanta I, Zhu S, Cocks FH, Preminger GM (1998a) Effects of tissue constraint on shock wave-induced bubble expansion in vivo. J Acoust Soc Am 104:3126–3129

    Article  ADS  Google Scholar 

  • Zhong P, Lin H, Xi X, Zhu S, Bhogte ES (1999a) Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study. J Acoust Soc Am 105:1997–2009

    Article  ADS  Google Scholar 

  • Zhong P, Xi X, Zhu S, Cocks FH, Preminger GM (1999b) Recent development in SWL physics research. J Endourol 13:611–617

    Article  Google Scholar 

  • Zhong P, Zhou Y, Zhu S (2001) Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med Biol 27:119–134

    Article  Google Scholar 

  • Zhou Y (2012) Reduction of bubble cavitation by modifying the diffraction wave from a lithotripter aperture. J Endourol 26:1075–1084

    Article  Google Scholar 

  • Zhou Y, Zhong P (2006) The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter. J Acoust Soc Am 119:3625–3636

    Article  ADS  Google Scholar 

  • Zhou Y, Cocks FH, Preminger GM, Zhong P (2004a) The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol 172:349–354

    Article  Google Scholar 

  • Zhou Y, Cocks FR, Prerninger GM, Zhong P (2004b) Innovations in shock wave lithotripsy technology: updates in experimental studies. J Urol 172:1892–1898

    Article  Google Scholar 

  • Zhu SL, Zhong P (1999) Shock wave-inertial microbubble interaction: a theoretical study based on the Gilmore formulation for bubble dynamics. J Acoust Soc Am 106:3024–3033

    Article  ADS  Google Scholar 

  • Zhu SL, Cocks FH, Preminger GM, Zhong P (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28:661–671

    Article  Google Scholar 

  • Zhu S, Dreyer T, Liebler M, Riedlinger R, Preminger GM, Zhing P (2004) Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode. Ultrasound Med Biol 30:675–682

    Article  Google Scholar 

  • Zimmermann R, Cumpanas A, Miclea F, Janetschek G (2009) Extracorporeal shock wave therapy for the treatment of chronic pelvic pain syndrome in males: a randomised, double-blind, placebo-controlled study. Eur Urol 56:418–424

    Article  Google Scholar 

  • Zins SR, Amare MF, Tadaki DK, Elster EA, Davis TA (2010) Comparative analysis of angiogenic gene expression in normal and impaired wound healing in diabetic mice: effects of extracorporeal shock wave therapy. Angiogenesis 13:293–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Loske, A.M. (2017). Shock Wave Interaction with Matter. In: Medical and Biomedical Applications of Shock Waves. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-47570-7_4

Download citation

Publish with us

Policies and ethics