Skip to main content

Humanoid Robot Gait on Sloping Floors Using Reinforcement Learning

  • Conference paper
  • First Online:
Robotics (SBR 2016, LARS 2016)

Abstract

Climbing ramps is an important ability for humanoid robots: ramps exist everywhere in the world, such as in accessibility ramps and building entrances. This works proposes the use of Reinforcement Learning to learn the action policy that will make a robot walk in an upright position, in a lightly sloped terrain. The proposed architecture of our system is a two-layer combination of the traditional gait generation control loop with a reinforcement learning component. This allows the use of an accelerometer to generate a correction for the gait, when the slope of the floor where the robot is walking changes. Experiments performed on a real robot showed that the proposed architecture is a good solution for the stability problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion, vol. 28. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  2. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT Press, Cambridge (1998)

    Google Scholar 

  3. Ha, I., Tamura, Y., Asama, H.: Gait pattern generation and stabilization for humanoid robot based on coupled oscillators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3207–3212 (2011)

    Google Scholar 

  4. Ha, I., Tamura, Y., Asama, H., Han, J., Hong, D.W.: Development of open humanoid platform DARwIn-OP. In: SICE Annual Conference (SICE), pp. 2178–2181 (2011)

    Google Scholar 

  5. Perico, D.H., Silva, I.J., Vilão Jr., C.O., Homem, T.P., Destro, R.C., Tonidandel, F., Bianchi, R.A.: Newton: a high level control humanoid robot for the RoboCup Soccer KidSize League. In: Osório, F.S., Wolf, D.F., Branco, K.C., Grassi, V., Becker, M., Romero, R.A.F. (eds.) Robotics. CCIS, vol. 507, pp. 53–73. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48134-9_4

    Chapter  Google Scholar 

  6. Eva Robot (2016). http://fei.edu.br/brahur2016/artigos/Artigo%202%20-%20UFU.pdf

  7. WF Wolves and Taura Bots - Team Description Paper (2016). http://www.robocup2016.org/media/symposium/Team-Description-Papers/Humanoid/RoboCup_2016_Humanoid_TeenSize_TDP_WF_Wolves_Taura_Bots.pdf

  8. Watkins, C.: Learning from delayed rewards. Doctoral dissertation, University of Cambridge (1989)

    Google Scholar 

  9. Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986–R996 (2001)

    Article  Google Scholar 

  10. Mcgeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9, 62–82 (1990)

    Article  Google Scholar 

  11. Vukobratović, M., Borovac, B.: Zero-moment point thirty five years of its life. Int. J. Humanoid Rob. 1, 157–173 (2004). World Scientific

    Article  Google Scholar 

  12. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 239–246 (2001)

    Google Scholar 

  13. Zhao, M., Dong, H., Zhang, N.: The instantaneous leg extension model of virtual slope walking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 3220–3225 (2009)

    Google Scholar 

  14. Vukobratović, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng. 16(2), 1–6 (1969)

    Article  Google Scholar 

  15. Zheng, Y.F., Shen, J.: Gait synthesis for the SD-2 biped robot to climb sloping surface. IEEE Trans. Robot. Autom. 6, 86–96 (1990)

    Article  Google Scholar 

  16. Chew, C.M., Pratt, J., Pratt, G.: Blind walking of a planar bipedal robot on sloped terrain. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 381–386 (1999)

    Google Scholar 

  17. Zhou, C., Yue, P.K., Ni, J., Chan, S.B.: Dynamically stable gait planning for a humanoid robot to climb sloping surface. In: IEEE Conference on Robotics, Automation and Mechatronics, vol. 1, pp. 341–346 (2004)

    Google Scholar 

  18. Hong, Y.D., Lee, B.J., Kim, J.H.: Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots. IEEE/ASME Trans. Mechatron. 16, 783–789 (2011)

    Article  Google Scholar 

  19. Huang, W., Chew, C.M., Zheng, Y., Hong, G.S.: Pattern generation for bipedal walking on slopes and stairs. In: 8th IEEE-RAS International Conference on Humanoid Robots, pp. 205–210 (2008)

    Google Scholar 

  20. Iverach-Brereton, C., Baltes, J., Postnikoff, B., Carrier, D., Anderson, J.: Fuzzy logic control of a humanoid robot on unstable terrain. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS, vol. 9513, pp. 202–213. Springer, Heidelberg (2015). doi:10.1007/978-3-319-29339-4_17

    Chapter  Google Scholar 

  21. Baltes, J., Iverach-Brereton, C., Anderson, J.: Human inspired control of a small humanoid robot in highly dynamic environments or Jimmy Darwin rocks the Bongo Board. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS, vol. 8992, pp. 466–477. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18615-3_38

    Chapter  Google Scholar 

  22. Perico, D.H., Silva, I.J., Vilao, C.O., Homem, T.P., Destro, R.C., Tonidandel, F., Bianchi, R.: Hardware and software aspects of the design and assembly of a new humanoid robot for RoboCup Soccer. In: Robotics: SBR-LARS Robotics Symposium and Robocontrol (SBR LARS Robocontrol), pp. 73–78 (2014)

    Google Scholar 

  23. Farchy, A., Barrett, S., MacAlpine, P., Stone, P.: Humanoid robots learning to walk faster: from the real world to simulation and back. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, pp. 39–46 (2013)

    Google Scholar 

  24. Hester, T., Quinlan, M., Stone, P.: Generalized model learning for reinforcement learning on a humanoid robot. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2369–2374 (2010)

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the Centro Universitário FEI and the Robotics and Artificial Intelligence Laboratory for supporting this project. The authors would also like to thank the scholarships provided by CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac J. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Silva, I.J., Perico, D.H., Homem, T.P.D., Vilão, C.O., Tonidandel, F., Bianchi, R.A.C. (2016). Humanoid Robot Gait on Sloping Floors Using Reinforcement Learning. In: Santos Osório, F., Sales Gonçalves, R. (eds) Robotics. SBR LARS 2016 2016. Communications in Computer and Information Science, vol 619. Springer, Cham. https://doi.org/10.1007/978-3-319-47247-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47247-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47246-1

  • Online ISBN: 978-3-319-47247-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics