Skip to main content

Combining Static and Runtime Methods to Achieve Safe Standing-Up for Humanoid Robots

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation: Foundational Techniques (ISoLA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9952))

Included in the following conference series:

Abstract

Due to its complexity, the standing-up task for robots is highly challenging, and often implemented by scripting the strategy that the robot should execute per hand. In this paper we aim at improving the approach of a scripted stand-up strategy by making it more stable and safe. To achieve this aim, we apply both static and runtime methods by integrating reinforcement learning, static analysis and runtime monitoring techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Yet unpublished, developed by Christian Dehnert, RWTH Aachen University, Germany.

References

  1. Stückler, J., Schwenk, J., Behnke, S.: Getting back on two feet: reliable standing-up routines for a humanoid robot. In: Proceedings of the IAS-9, pp. 676–685. IOS Press (2006)

    Google Scholar 

  2. Morimoto, J., Doya, K.: Acquisition of stand-up behavior by a real robot using hierarchical reinforcement learning. Robot. Auton. Syst. 36(1), 37–51 (2001)

    Article  MATH  Google Scholar 

  3. Morimoto, J., Doya, K.: Reinforcement learning of dynamic motor sequence: learning to stand up. In: Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 1721–1726 (1998)

    Google Scholar 

  4. Schuitema, E., Wisse, M., Ramakers, T., Jonker, P.: The design of LEO: a 2D bipedal walking robot for online autonomous reinforcement learning. In: Proceedings of the IROS 2010, pp. 3238–3243 (2010)

    Google Scholar 

  5. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  6. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy approach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17524-9_21

    Google Scholar 

  7. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  8. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. Softw. Tools Technol. Transf. 13(1), 3–19 (2010)

    Article  Google Scholar 

  9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  10. van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision processes. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning, vol. 12, pp. 3–42. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19835-9_30

    Chapter  Google Scholar 

  12. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair for Markov decision processes. In: Proceedings of the TASE 2013, pp. 85–92. IEEE (2013)

    Google Scholar 

  13. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. In: Proceedings of the HSB 2013. EPTCS, vol. 125, pp. 3–19 (2013)

    Google Scholar 

  14. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)

    Article  Google Scholar 

  15. Bioloid premium kit. http://en.robotis.com/index/product.php?cate_code=121010. Accessed 3 July 2016

  16. Dynamixel actuators. http://en.robotis.com/index/product.php?cate_code=101010. Accessed 3 July 2016

  17. Bioloid URDF model. https://github.com/dxydas/ros-bioloid. Accessed 3 July 2016

  18. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: Proceedings of the IROS 2013, pp. 1321–1326 (2013)

    Google Scholar 

  19. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., Rückstieß, T., Schmidhuber, J.: PyBrain. J. Mach. Learn. Res. 11, 743–746 (2010)

    Google Scholar 

  21. Defazio, A., Graepel, T.: A comparison of learning algorithms on the arcade learning environment. arXiv preprint arXiv:1410.8620 (2014)

  22. Lange, S., Gabel, T., Riedmiller, M.: Batch reinforcement learning. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning, pp. 45–73. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Tacchella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Leofante, F., Vuotto, S., Ábrahám, E., Tacchella, A., Jansen, N. (2016). Combining Static and Runtime Methods to Achieve Safe Standing-Up for Humanoid Robots. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Foundational Techniques. ISoLA 2016. Lecture Notes in Computer Science(), vol 9952. Springer, Cham. https://doi.org/10.1007/978-3-319-47166-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47166-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47165-5

  • Online ISBN: 978-3-319-47166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics