Skip to main content

Monitoring the Welfare of Polar Bear Populations in a Rapidly Changing Arctic

  • Chapter
  • First Online:
Marine Mammal Welfare

Part of the book series: Animal Welfare ((AWNS,volume 17))

  • 3204 Accesses

Abstract

Most programs for monitoring the welfare of wildlife populations support efforts aimed at reaching discrete management objectives, like mitigating conflict with humans. While such programs can be effective, their limited scope may preclude systemic evaluations needed for large-scale conservation initiatives, like the recovery of at-risk species. We discuss select categories of metrics that can be used to monitor how polar bears (Ursus maritimus) are responding to the primary threat to their long-term persistence—loss of sea ice habitat due to the unabated rise in atmospheric greenhouse gas (GHG; e.g., CO2) concentrations—that can also provide information on ecosystem function and health. Monitoring key aspects of polar bear population dynamics, spatial behavior, health and resiliency can provide valuable insight into ecosystem state and function, and could be a powerful tool for achieving Arctic conservation objectives, particularly those that have transnational policy implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MR, Stocker TF (2013) Impact of delay in reducing carbon dioxide emissions. Nat Clim Chang 4:23–26. doi:10.1038/NCLIMATE2077

    Article  CAS  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  CAS  PubMed  Google Scholar 

  • Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265

    Article  CAS  PubMed  Google Scholar 

  • Amstrup SC, Gardner C, Meyers KC et al (1989) Ethylene glycol (antifreeze) poisoning in a free-ranging polar bear. Vet Hum Toxicol 31:317–319

    CAS  PubMed  Google Scholar 

  • Amstrup SC, Durner GM (1995) Survival rates of radio-collared female polar bears and their dependent young. Can J Zool 73:1312–1322

    Article  Google Scholar 

  • Amstrup SC, Durner GM, Stirling I et al (2000) Movements and distribution of polar bears in the Beaufort Sea. Can J Zool 78:948–966

    Article  Google Scholar 

  • Amstrup SC (2003) Polar bear, Ursus maritimus. In: Feldhamer GA, Thompson BC, Chapman JA (eds) Wild mammals of North America: biology, management, and conservation. Johns Hopkins University Press, Baltimore, Maryland, pp 587–610

    Google Scholar 

  • Amstrup SC, McDonald TL, Durner GM (2004) Using satellite radiotelemetry data to delineate and manage wildlife populations. Wildl Soc Bull 32:661–679

    Article  Google Scholar 

  • Amstrup SC, Durner GM, Stirling I et al (2005) Allocating harvests among polar bear stocks in the Beaufort Sea. Arctic 58:247–259

    Google Scholar 

  • Amstrup SC, Stirling I, Smith TS et al (2006) Recent observations of intraspecific predation and cannibalism among polar bears in the southern Beaufort Sea. Polar Biol 29:997–1002

    Article  Google Scholar 

  • Amstrup SC, Marcot BG, Douglas DC (2008) A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears. In: DeWeaver ET, Bitz CM, Tremblay LB (eds) Arctic Sea ice decline: observations, projections, mechanisms, and implications, American Geophysical Union Geophysical Monograph No. 180, Washington, DC, pp 213–268

    Google Scholar 

  • Amstrup SC, DeWeaver ET, Douglas DC et al (2010) Greenhouse gas mitigation can reduce sea ice loss and increase polar bear persistence. Nature 468:955–960

    Article  CAS  PubMed  Google Scholar 

  • Andelman SA, Fagan WF (2000) Umbrellas and flagships: efficient conservation surrogates or expensive mistakes? Proc Natl Acad Sci U S A 97:5954–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angeloni F, Wagemaker N, Vergeer P et al (2012) Genomic toolboxes for conservation biologists. Evol Appl 5:130–143

    Article  CAS  PubMed  Google Scholar 

  • Atkinson SN, Ramsay MA (1995) The effects of prolonged fasting of the body composition and reproductive success of female polar bears (Ursus maritimus). Funct Ecol 9:559–567

    Article  Google Scholar 

  • Atwood TC, Peacock E, Burek-Huntington K et al (2015) Prevalence and spatio-temporal variation of an alopecia syndrome detected in polar bears in the southern Beaufort Sea. J Wildl Dis 51:48–59

    Article  PubMed  Google Scholar 

  • Atwood TC, Marcot BG, Douglas DC et al (2016a) Forecasting the relative influence of environmental and anthropogenic stressors on polar bears. Ecosphere 7(6):e01370

    Google Scholar 

  • Atwood TC, Peacock E, McKinney M et al (2016b) Rapid environmental change drives increased land use by an Arctic marine predator. PLoS One 11(6):e0155932. doi:10.1371/journal.pone.0155932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berteaux D, Réale D, McAdam AG et al (2004) Keeping pace with fast climate change: can arctic life count on evolution? Integr Comp Biol 44:140–151

    Article  PubMed  Google Scholar 

  • Bijlsma R, Bundgaard J, Boerema AC et al (1997) Genetic and environmental stress, and the persistence of populations. In: Bijlsma R, Loeschcke V (eds) Environmental stress, adaptation and evolution. Birkhäuser-Verlag, Basel, Switzerland, pp 193–207

    Chapter  Google Scholar 

  • Born EW, Wiig Ø, Thomassen J (1997) Seasonal and annual movements of radio-collared polar bears (Ursus maritimus) in Northeast Greenland. J Mar Syst 10:67–77

    Article  Google Scholar 

  • Bossart GD (2011) Marine mammals as sentinel species for oceans and human health. Vet Pathol 48:676–690

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Google Scholar 

  • Bromaghin J, McDonald T, Stirling I et al (2015) Polar bears in the Beaufort Sea: population decline and stabilization in the 2000’s. Ecol Appl 25:634–651

    Article  PubMed  Google Scholar 

  • Brower CD, Carpenter A, Branigan ML et al (2002) The polar bear management agreement for the southern Beaufort Sea: an evaluation of the first ten years of a unique conservation agreement. Arctic 57:362–372

    Google Scholar 

  • Cattet MRL, Caulkett NA, Obbard ME et al (2002) A body condition index for ursids. Can J Zool 80:1156–1161

    Article  Google Scholar 

  • Clarkson PL, Irish D (1991) Den collapse kills female polar bear and two newborn cubs. Arctic44:83–84.

    Google Scholar 

  • Cherry SG, Derocher AE, Thiemann GW et al (2013) Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. J Anim Ecol 82:912–921

    Article  PubMed  Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357. doi:10.1371/journal.pbio.1000357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comiso JC (2012) Large decadal decline of the Arctic multiyear ice cover. J Climatol 25:1176–1193

    Article  Google Scholar 

  • Cooper MH, Iverson SJ, Heras H (2005) Dynamics of blood chylomicron fatty acids in a marine carnivore: implications for lipid metabolism and quantitative estimation of predator diets. J Comp Physiol 175:133–145

    Article  CAS  Google Scholar 

  • Coulson T, Gaillard J, Festa-Bianchet M (2005) Decomposing the variation in population growth into contributions from multiple demographic rates. J Anim Ecol 74:789–801

    Article  Google Scholar 

  • Dawson TP, Jackson ST, House JI et al (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    Article  CAS  PubMed  Google Scholar 

  • DeMaster DP, Stirling I (1983) The estimation of survival and litter size of polar bear cubs. Int Conf Bear Biol Manag 5:260–263

    Google Scholar 

  • Derocher AE, Stirling I (1994) Age-specific reproductive performance of female polar bears (Ursus maritimus). J Zool 234:527–536

    Article  Google Scholar 

  • Derocher AE, Stirling I (1995) Estimation of polar bear population size and survival in western Hudson Bay. J Wildl Manag 59:215–221

    Article  Google Scholar 

  • Derocher AE, Stirling I (1996) Aspects of survival in juvenile polar bears. Can J Zool 74:1246–1252

    Article  Google Scholar 

  • Derocher AE, Wiig Ø (1999) Infanticide and cannibalism of juvenile polar bears (Ursus maritimus) in Svalbard. Arctic 52:307–310

    Google Scholar 

  • Derocher AE, Lunn NJ, Stirling I (2004) Polar bears in a warming climate. Integr Comp Biol 44:163–176

    Article  PubMed  Google Scholar 

  • Desforges JPW, Sonne C, Levin M et al (2016) Immunotoxic effects of environmental pollutants in marine mammals. Environ Int 86:126–139

    Article  CAS  PubMed  Google Scholar 

  • Durner GM, Douglas DC, Nielson RM et al (2009) Predicting 21st-century polar bear habitat distribution from global climate models. Ecol Monogr 79:25–58

    Article  Google Scholar 

  • Durner GM, Whiteman JP, Harlow HJ et al (2011) Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat. Polar Biol 34:975–984

    Article  Google Scholar 

  • Durner GM (2014) Impacts of a changing Arctic on habitat use and behavior of polar bears (Ursus maritimus). Dissertation, University of Wyoming, Laramie

    Google Scholar 

  • Dyck MG (2006) Characteristics of polar bears killed in defense of life and property in Nunavut, Canada, 1970-2000. Ursus 17:52–62

    Article  Google Scholar 

  • Eizaguirre C, Baltazar-Soares M (2014) Evolutionary conservation—evaluating the adaptive potential of species. Evol Appl 7:963–967

    Article  PubMed Central  Google Scholar 

  • Elmberg J, Nummi P, Pöysä H et al (2006) The scientific basis for new and sustainable management of migratory European ducks. Wildl Biol 12:121–127

    Article  Google Scholar 

  • Fagre A, Nol P, Atwood TC et al (2015) A review of infectious agents in polar bears (Ursus maritimus) and their long-term ecological relevance. EcoHealth. doi:10.1007/s10393-015-1023-6

    Google Scholar 

  • Farley SD, Robbins CT (1994) Development of two methods to estimate body composition of bears. Can J Zool 72:220–226

    Article  Google Scholar 

  • Garner GW, Knick ST, Douglas DC (1990) Seasonal movements of adult female polar bears in the Bering and Chukchi Seas. 8th International Conference on Bear Research and Management 8:219–226.

    Google Scholar 

  • Gilbert AT, Fooks AR, Hayman FT et al (2013) Deciphering serology to understand the ecology of infectious diseases in wildlife. EcoHealth 10:298–313

    Article  PubMed  Google Scholar 

  • Gormezano LJ, Rockwell RF (2013) What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay. Ecol Evol 3:3509–3523

    PubMed  PubMed Central  Google Scholar 

  • Gunnarsson S (2006) The conceptualisation of health and disease in veterinary medicine. Acta Vet Scand 47:71

    Article  PubMed Central  Google Scholar 

  • Hanisch SL, Riley SJ, Nelson MP (2012) Promoting wildlife health or fighting wildlife disease: insights from history, philosophy, and science. Wildl Soc Bull 36:477–482

    Article  Google Scholar 

  • Henriksen EO, Wiig Ø, Skaare JU et al (2001) Monitoring PCBs in polar bears: lessons learned from Svalbard. J Environ Monit 3:493–498

    Article  CAS  PubMed  Google Scholar 

  • Herreman J, Peacock E (2013) Polar bear use of a persistent food subsidy: insights from non-invasive genetic sampling in Alaska. Ursus 24:148–163

    Article  Google Scholar 

  • Hill WG (2012) Quantitative genetics in the genomics era. Curr Genet 13:196–206

    Article  CAS  Google Scholar 

  • Iverson SJ (1993) Milk secretion in marine mammals in relation to foraging: can milk fatty acids predict diet? Symp Zool Soc Lond 66:263–291

    Google Scholar 

  • Iversen M, Aars J, Haug T et al (2013) The diet of polar bears (Ursus maritimus) from Svalbard, Norway, inferred from scat analysis. Polar Biol 36:561–571

    Article  Google Scholar 

  • IUCN/PBSG, International Union for the Conservation of Nature/Polar Bear Specialist Group (2014) Summary of polar bear population status per 2014. http://pbsg.npolar.no/en/status/status-table.html. Accessed 12 Dec 2016

  • Kellermann VM, Van Heerwaarden B, Hoffmann AA et al (2006) Very low additive genetic variance and evolutionary potential in multiple populations of two rainforest Drosophila species. Evolution 60:1104–1108

    Article  PubMed  Google Scholar 

  • Lambeck RJ (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11:849–856

    Article  Google Scholar 

  • Landres PB, Verner J, Thomas JW (1988) Ecological uses of vertebrate indicator species: a critique. Conserv Biol 2:316–328

    Article  Google Scholar 

  • Larsen T (1985) Polar bear denning and cub production in Svalbard, Norway. J Wildl Manag 49:320–326

    Article  Google Scholar 

  • LaRue M, Stapleton S, Porter C et al (2015) Expanding applications for using high-resolution satellite imagery to monitor polar bear abundance and distribution. Wildl Soc Bull 39:772–779

    Article  Google Scholar 

  • Lentfer JW, Hensel RJ, Gilbert JR et al (1980) Population characteristics of Alaskan polar bears. In: Martinka CJ, McArthur KL (eds) Bears: their biology and management. Fourth international conference on bear research and management. U.S. Government Printing Office, Washington, D.C., pp 102–115

    Google Scholar 

  • Liu S, Lorenzen ED, Fumagalli M et al (2014) Population genomics reveal recent speciationand rapid evolutionary adaptation in polar bears. Cell 157:785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn NJ, Stenhouse GB (1985) An observation of possible cannibalism by polar bears (Ursus maritimus). Can J Zool 63:1516–1517

    Article  Google Scholar 

  • Lunn NJ, Stirling I (1985) The significance of supplemental food to polar bears during the ice-free period of Hudson Bay. Can J Zool 63:2291–2297

    Article  Google Scholar 

  • Lynch M (1996) A quantitative-genetic perspective on conservation issues. In: Avise JC, Hamrick JL (eds) Conservation genetics. Chapman and Hall, New York, pp 471–501

    Chapter  Google Scholar 

  • Magurran AE, Baillie SR, Buckland ST et al (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25:574–582

    Article  PubMed  Google Scholar 

  • Martin J, Runge MC, Nichols JD et al (2009) Structured decision making as a conceptual framework to identify thresholds for conservation and management. Ecol Appl 19:1079–1090

    Article  PubMed  Google Scholar 

  • Mauritzen M, Belikov SE, Boltunov AN et al (2003) Functional responses in polar bear habitat selection. Oikos 100:112–124

    Article  Google Scholar 

  • Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23:1080–1089

    Article  PubMed  Google Scholar 

  • McKinney M, Atwood TC, Dietz R et al (2014) Validation of adipose lipid content from biopsies as a body condition index using polar bears. Ecol Evol 4:516–527

    Article  PubMed  PubMed Central  Google Scholar 

  • McLellan BN (2011) Implications of a high-energy and low-protein diet on the body composition, fitness, and competitive abilities of black (Ursus americanus) and grizzly (Ursus arctos) bears. Can J Zool 89:546–558

    Article  CAS  Google Scholar 

  • Miller W, Schuster SC, Welch AJ et al (2012) Polar and Brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc Natl Acad Sci U S A 109(36):e2382–e2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár PK, Derocher AE, Thiemann GW et al (2010) Predicting survival, reproduction and abundance of polar bears under climate change. Biol Conserv 143:1612–1622

    Article  Google Scholar 

  • Molnár PK, Derocher AE, Klanjscek T et al (2011) Predicting climate change impacts on polar bear litter size. Nat Commun 2:186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molnár PK, Derocher AE, Thiemann GW et al (2014) Corrigendum to “Predicting survival, reproduction and abundance of polar bears under climate change” (Biol Conserv 143:1612–1622). Biol Conserv 177:230–231. doi:10.1016/j.biocon.2014.07.001

    Article  Google Scholar 

  • Monnett C, Gleason JS (2006) Observations of mortality associated with extended open-water swimming by polar bears in the Alaskan Beaufort Sea. Polar Biol 29:681–687

    Article  Google Scholar 

  • Murray DL, Patterson BR (2006) Wildlife survival estimation: recent advances and future directions. J Wildl Manag 70:1499–1503

    Article  Google Scholar 

  • Niemi GJ, McDonald ME (2004) Application ofgical indicators. Annu Rev Ecol Evol Syst 35:89–111

    Article  Google Scholar 

  • Nordenfelt L (2011) Health and welfare in animals and humans. Acta Biol 59:139–152

    Google Scholar 

  • Nylin S, Gotthard K (1998) Plasticity in life history traits. Annu Rev Entomol 43:63–83

    Article  CAS  PubMed  Google Scholar 

  • Obbard ME, Cattet MR, Moody T et al (2006) Temporal trends in the body condition of southern Hudson Bay polar bears. Applied Research and Development Branch, Ontario

    Google Scholar 

  • Obbard ME, McDonald TL, Howe EJ et al (2007) Polar bear population status in southern Hudson Bay, Canada. Administrative Report. US Department of the Interior, US Geological Survey, Anchorage, AK

    Google Scholar 

  • Obbard ME, Cattet MR, Moody T et al (2008) Temporal trends in the body condition of southern Hudson Bay polar bears. Research Information Note Number 3, Ontario Ministry of Natural Resources

    Google Scholar 

  • Obbard ME, Cattet MR, Howe EJ et al (2016) Trends in body condition in polar bears (Ursus maritimus) from the southern Hudson Bay subpopulation in relation to changes in sea ice. Arct Sci. doi:10.1139/AS-2015-0027

    Google Scholar 

  • Pagano AM, Durner GM, Amstrup SC et al (2012) Long-distance swimming by polar bears (Ursus maritimus) of the southern Beaufort Sea during years of extensive open water. Can J Zool 90:663–676

    Article  Google Scholar 

  • Pagano AM, Peacock E, McKinney MA (2014) Remote biopsy darting and marking for polar bears. Mar Mamm Sci 30:169–183

    Article  Google Scholar 

  • Patyk K, Duncan C, Nol P et al (2015) Establishing a definition of polar bear health to guide research and management activities. Sci Total Environ 514:371–378

    Article  CAS  PubMed  Google Scholar 

  • Peacock E, Derocher AE, Thiemann GW et al (2011) Conservation and management of Canada’s polar bears (Ursus maritimus) in a changing Arctic. Can J Zool 89:371–385

    Article  Google Scholar 

  • Pigliucci M (1996) How organisms respond to environmental changes: from phenotypes to molecules (and vice versa). Trends Ecol Evol 11:168–173

    Article  Google Scholar 

  • Prop J, Aars J, Bårdsen BJ et al (2015) Climate change and the increasing impact of polar bears on bird populations. Front Ecol Evol. doi:10.3389/fevo.2015.00033

    Google Scholar 

  • Przybylo R, Sheldon BC, Merilä J (2000) Climatic effects on breeding and morphology: evidence for phenotypic plasticity. J Anim Ecol 69:395–403

    Article  Google Scholar 

  • Ramsay MA, Stirling I (1988) Reproductive biology and ecology of female polar bears (Ursus maritimus). J Zool 214:601–633

    Article  Google Scholar 

  • Ramsay MA, Hobson KA (1991) Polar bears make little use of terrestrial food webs: evidence from stable-carbon isotope analysis. Oecologia 86:598–600

    Article  CAS  PubMed  Google Scholar 

  • Regehr EV, Amstrup SC, Stirling I (2006) Polar bear population status in the southern Beaufort Sea. U.S. Geological Survey, Open-File Report 2006–1337

    Google Scholar 

  • Regehr EV, Lunn NJ, Amstrup SC et al (2007) Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay. J Wildl Manag 71:2673–2683

    Article  Google Scholar 

  • Regehr EV, Hunter CM, Caswell H et al (2010) Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. J Anim Ecol 79:117–127

    Article  PubMed  Google Scholar 

  • Regehr EV, Wilson RR, Rode KD et al (2015) Resilience and risk: a demographic model to inform conservation planning for polar bears. Open-File Report No. 2015–1029. US Geological Survey

    Google Scholar 

  • Richardson E, Stirling I, Hik DS (2005) Polar bear (Ursus maritimus) maternity denning habitat in western Hudson Bay: a bottom-up approach to resource selection functions. Can J Zool 83:860–870

    Article  Google Scholar 

  • Richardson ES, Andriashek D (2006) Wolf (Canis lupus) predation of a polar bear (Ursus maritimus) cub on the sea ice off northwestern Banks Island, Northwest Territories, Canada. Arctic 59:322–324

    Google Scholar 

  • Ricke KL, Caldeira K (2014) Maximum warming occurs about one decade after a carbon dioxide emission. Environ Res Lett 9:124002

    Article  CAS  Google Scholar 

  • Robbins CT, Ben David M, Fortin JK et al (2012) Maternal condition determines birth date and growth of newborn bear cubs. J Mammal 93:540–546

    Article  Google Scholar 

  • Robbins CT, Lopez-Alfaro C, Rode KD et al (2013) Hibernation and seasonal fasting in bears: the energetic costs and consequences for polar bears. J Mammal 93:1493–1503

    Article  Google Scholar 

  • Rockwell RF, Gormezano LJ (2009) The early bear gets the goose: climate change, polar bears and lesser snow geese in western Hudson Bay. Polar Biol 32:539–547

    Article  Google Scholar 

  • Rode KD, Amstrup SC, Regehr EV (2010) Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol Appl 20:768–782

    Article  PubMed  Google Scholar 

  • Rode KD, Peacock E, Taylor M et al (2012) A tale of two polar bear populations: ice habitat, harvest, and body condition. Popul Ecol 54:3–18

    Article  Google Scholar 

  • Rode KD, Regehr EV, Douglas DC et al (2014a) Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Glob Chang Biol 20:76–88

    Article  PubMed  Google Scholar 

  • Rode KD, Bromaghin J, Pagano A et al (2014b) Evaluating the potential for long- and short-term effects of capture on polar bears. Wildl Res 41:311–322

    Article  Google Scholar 

  • Rode KD, Robbins CT, Nelson L et al (2015) Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front Ecol Environ 13:138–145

    Article  Google Scholar 

  • Russell RH (1975) The food habits of polar bears of James Bay and Southwest Hudson Bay in summer and autumn. Arctic 28:117–129

    Article  Google Scholar 

  • Ryser-Degiorgis MP (2013) Wildlife health investigations: needs, challenges and recommendations. BMC Vet Res 9:1–17

    Article  Google Scholar 

  • Sahanatien V, Peacock E, Derocher AE (2015) Population substructure and space use of Foxe Basin polar bears. Ecol Evol 5:2851–2864

    Article  PubMed  PubMed Central  Google Scholar 

  • Samhouri JF, Levin PS, Ainsworth CH (2010) Identifying thresholds for ecosystem-based management. PLoS One 5:e8907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schliebe S, Wiig Ø, Derocher A et al (2008) Ursus maritimus. The IUCN red list of threatened species 2008: e.T22823A9391171. The IUCN Red List of Threatened Species(tm) http://www.iucnredlist.org/details/22823/0. Accessed 12 Dec 2016

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Sleeman JM (2013) Has the time come for big science in wildlife health? EcoHealth 10:335–338

    Article  PubMed  Google Scholar 

  • Smith PA, Elliott KH, Gaston AJ et al (2010) Has early ice clearance increased predation on breeding birds by polar bears? Polar Biol 33:1149–1153

    Article  Google Scholar 

  • Stallknecht DE (2007) Impediments to wildlife disease surveillance, research, and diagnostics. Curr Top Microbiol Immunol 315:445–461

    CAS  PubMed  Google Scholar 

  • Stapleton S, Atkinson S, Hedman D et al (2014a) Revisiting western Hudson Bay: using aerial surveys to update polar bear abundance in a sentinel population. Biol Conserv 170:38–47

    Article  Google Scholar 

  • Stapleton S, LaRue M, Lecomte N et al (2014b) Polar bears from space: assessing satellite imagery as a tool to monitor Arctic wildlife. PLoS One. doi:10.1371/journal.pone.0101513

    Google Scholar 

  • Stenhouse GB, Lee LJ, Poole JG (1988) Some characteristics of polar bears killed during conflicts with humans in the Northwest Territories, 1976-86. Arctic 41:275–278

    Article  Google Scholar 

  • Stephen C (2014) Toward a modernized definition of wildlife health. J Wildl Dis 50:427–430

    Article  PubMed  Google Scholar 

  • Stevenson RD, Woods WA (2006) Condition indices for conservation: new uses for evolving tools. Integr Comp Biol 46:1169–1190

    Article  CAS  PubMed  Google Scholar 

  • Stirling I, Andriashek D, Latour P et al (1975) The distribution and abundance of polar bears in the eastern Beaufort Sea. Beaufort Sea technical report 2. Department of the Environment, Victoria, British Columbia

    Google Scholar 

  • Stirling I, Spencer C, Andriashek D (1989) Immobilization of polar bears (Ursus maritimus) with Telazol® in the Canadian Arctic. J Wildl Dis 25:159–168

    Article  CAS  PubMed  Google Scholar 

  • Stirling I, Derocher AE (1993) Possible impacts of climatic warming on polar bears. Arctic 46:240–245

    Article  Google Scholar 

  • Stirling I, Lunn NJ, Iacozza J (1999) Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change. Arctic 52:294–306

    Article  Google Scholar 

  • Stirling I, Parkinson CL (2006) Possible effects of climate warming on selected populations of polar bears (Ursus maritimus) in the Canadian Arctic. Arctic 59:261–275

    Google Scholar 

  • Stirling I, Derocher AE (2012) Effects of climate warming on polar bears: a review of the evidence. Glob Chang Biol 18:2694–2706

    Article  PubMed  Google Scholar 

  • Stone IR, Derocher AE (2007) An incident of polar bear infanticide and cannibalism on Phippsøya, Svalbard. Polar Record 43:171–173

    Article  Google Scholar 

  • Stroeve JC, Markus T, Boisvert L et al (2014) Changes in Arctic melt season and implications for sea ice loss. Geophys Res Lett 41:1216–1225

    Article  Google Scholar 

  • Taylor M, Elkin B, Maier N et al (1991) Observation of a polar bear with rabies. J Wildl Dis 27:337–339

    Article  CAS  PubMed  Google Scholar 

  • Taylor M, Lee J (1995) Distribution and abundance of Canadian polar bear populations: a management perspective. Arctic 48:147–154

    Article  Google Scholar 

  • Thiemann GW (2008) Using fatty acid signatures to study bear foraging: technical considerations and future applications. Ursus 19:59–72

    Article  Google Scholar 

  • Thiemann GW, Iverson SJ, Stirling I (2008) Polar bear diets and arctic marine food webs: insights from fatty acid analysis. Ecol Monogr 78:591–613

    Article  Google Scholar 

  • Treves A, Karanth KU (2003) Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv Biol 17:1491–1499

    Article  Google Scholar 

  • U.S. Fish and Wildlife Service (2008) Endangered and threatened wildlife and plants; 12-month petition finding and proposed rule to list the polar bear (Ursus maritimus) as threatened throughout its range. Fed Reg 72:1064–1099

    Google Scholar 

  • Vongraven D, Aars J, Amstrup S et al (2012) A circumpolar monitoring framework for polar bears. Ursus 23(sp2):1–66

    Article  Google Scholar 

  • Wassmann P, Duarte CM, Agusti S et al (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Chang Biol 17:1235–1249

    Article  Google Scholar 

  • Welch AJ, Bedoya-Reina OC, Carretero-Paulet L et al (2014) Polar bears exhibit genome-wide signatures of bioenergetics adaptation to life in the Arctic environment. Genome Biol Evol 6:433–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams SE, Shoo LP, Isaac JL et al (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6:2621–2626

    Article  CAS  PubMed  Google Scholar 

  • Wimsatt WA (1963) Delayed implantation in the Ursidae, with particular reference to the black bear (Ursus americanus Pallas). In: Enders AC (ed) Delayed implantation. University of Chicago Press, IL, pp 49–76

    Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46(S1):S120–S139

    Article  Google Scholar 

  • Wiig Ø (1998) Survival and reproductive rates for polar bears at Svalbard. Ursus 10:25–32

    Google Scholar 

  • World Association of Animal Health (OIE) (2013) Collection, submission and storage of diagnostic specimens. Manual of diagnostic tests and vaccines for terrestrial animals 2015

    Google Scholar 

  • World Association for Animal Health (OIE) (2015) Terrestrial Animal Health Code

    Google Scholar 

  • Zedrosser A, Dahle B, Swenson JE (2006) Population density and food conditions determine adult female body size in brown bears. J Mammal 87:510–518

    Article  Google Scholar 

  • Zedrosser A, Bellemain E, Taberlet P et al (2007) Genetic estimates of annual reproductive success in male brown bears: the effects of body size, age, internal relatedness and population density. J Anim Ecol 76:368–375

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd C. Atwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Atwood, T.C., Duncan, C., Patyk, K.A., Sonsthagen, S.A. (2017). Monitoring the Welfare of Polar Bear Populations in a Rapidly Changing Arctic. In: Butterworth, A. (eds) Marine Mammal Welfare. Animal Welfare, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-46994-2_28

Download citation

Publish with us

Policies and ethics