Skip to main content

Convolutional Neural Network for Reconstruction of 7T-like Images from 3T MRI Using Appearance and Anatomical Features

  • Conference paper
  • First Online:
Deep Learning and Data Labeling for Medical Applications (DLMIA 2016, LABELS 2016)

Abstract

The advanced 7 Tesla (7T) Magnetic Resonance Imaging (MRI) scanners provide images with higher resolution anatomy than 3T MRI scanners, thus facilitating early diagnosis of brain diseases. However, 7T MRI scanners are less accessible, compared to the 3T MRI scanners. This motivates us to reconstruct 7T-like images from 3T MRI. We propose a deep architecture for Convolutional Neural Network (CNN), which uses the appearance (intensity) and anatomical (labels of brain tissues) features as input to non-linearly map 3T MRI to 7T MRI. In the training step, we train the CNN by feeding it with both appearance and anatomical features of the 3T patch. This outputs the intensity of center voxel in the corresponding 7T patch. In the testing step, we apply the trained CNN to map each input 3T patch to the 7T-like image patch. Our performance is evaluated on 15 subjects, each with both 3T and 7T MR images. Both visual and numerical results show that our method outperforms the comparison methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolka, A.G., Hendriksea, J., Zwanenburg, J.J.M., Vissera, F., Luijtena, P.R.: Clinical applications of 7T MRI in the brain. Eur. J. Radiol. 82, 708–718 (2013)

    Article  Google Scholar 

  2. DOTmed Daily News (2012). www.dotmed.com/news/story/17820

  3. Rueda, A., Malpica, N., Romero, E.: Single-image super-resolution of brain MR images using overcomplete dictionaries. Med. Image Anal. 17, 113–132 (2013)

    Article  Google Scholar 

  4. Burgos, N., Cardoso, M.J., Thielemans, K., Modat, M., Pedemonte, S., Dickson, J., Barnes, A., Ahmed, R., Mahoney, C.J., Schott, J.M., Duncan, J.S., Atkinson, D., Arridge, S.R., Hutton, B.F., Ourselin, S.: Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans. Med. Imag. 33(12), 2332–2341 (2014)

    Article  Google Scholar 

  5. Bahrami, K., Shi, F., Zong, X., Shin, H.W., An, H., Shen, D.: Hierarchical reconstruction of 7T-like images from 3T MRI using multi-level CCA and group sparsity. MICCAI, pp. 1–8 (2015)

    Google Scholar 

  6. Bahrami, K., Shi, F., Zong, X., Shin, H.W., An, H., Shen, D.: Reconstruction of 7T-like images from 3T MRI. IEEE Trans. Med Imag. 35(9), 2085–2097 (2016)

    Article  Google Scholar 

  7. Dong, C., Loy, C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  8. Kulkarni, K., Lohit, S., Turaga, P.K., Kerviche, R., Ashok, A.: ReconNet: non-iterative reconstruction of images from compressively sensed random measurements. arXiv:1601.06892 (2016)

  9. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imag. 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bahrami, K., Shi, F., Rekik, I., Shen, D. (2016). Convolutional Neural Network for Reconstruction of 7T-like Images from 3T MRI Using Appearance and Anatomical Features. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science(), vol 10008. Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46976-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46975-1

  • Online ISBN: 978-3-319-46976-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics