Skip to main content

Recurrent Neural Networks for Adaptive Feature Acquisition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9949))

Abstract

We propose to tackle the cost-sensitive learning problem, where each feature is associated to a particular acquisition cost. We propose a new model with the following key properties: (i) it acquires features in an adaptive way, (ii) features can be acquired per block (several at a time) so that this model can deal with high dimensional data, and (iii) it relies on representation-learning ideas. The effectiveness of this approach is demonstrated on several experiments considering a variety of datasets and with different cost settings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In French, “radin” Means “skinflint”.

  2. 2.

    Note that the Hadamard product is used during training since the training inputs are fully known. During inference on new inputs, the value of the Hadamard product is directly computed by only acquiring the chosen features.

  3. 3.

    We also tested Gated Recurrent Unit ([8]).

  4. 4.

    Note that our approach also handles other problems such as multi-label classification, regression or ranking as long as the loss function \(\varDelta \) is differentiable.

  5. 5.

    One third of the examples for each set, except for MNIST, where the split corresponds to 15 %, 5 %, 80 % of the data.

References

  1. Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual attention. arXiv preprint arXiv:1412.7755 (2014)

  2. Benbouzid, D., Busa-Fekete, R., Kégl, B.: Fast classification using sparse decision DAGs. In: ICML (2012)

    Google Scholar 

  3. Bi, J., Bennett, K., Embrechts, M., Breneman, C., Song, M.: Dimensionality reduction via sparse support vector machines. JMLR 3, 1229–1243 (2003)

    MATH  Google Scholar 

  4. Bilgic, M., Getoor, L.: VOILA: efficient feature-value acquisition for classification. In: Proceedings of the National Conference on Artificial Intelligence (2007)

    Google Scholar 

  5. Chai, X., Deng, L., Yang, Q., Ling, C.X.: Test-cost sensitive naive Bayes classification. In: Data Mining, ICDM 2004 (2004)

    Google Scholar 

  6. Chapelle, O., Shivaswamy, P., Vadrevu, S., Weinberger, K., Zhang, Y., Tseng, B.: Boosted multi-task learning. Mach. Learn. 85(1–2), 149–173 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chen, M., Weinberger, K.Q., Chapelle, O., Kedem, D., Xu, Z.: Classifier cascade for minimizing feature evaluation cost. In: AISTATS, pp. 218–226 (2012)

    Google Scholar 

  8. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)

  9. Dulac-Arnold, G., Denoyer, L., Preux, P., Gallinari, P.: Sequential approaches for learning datum-wise sparse representations. Mach. Learn. 89, 87–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. JMLR 3, 1157–1182 (2003)

    MATH  Google Scholar 

  11. Ji, S., Carin, L.: Cost-sensitive feature acquisition and classification. Pattern Recogn. 40(5), 1474–1485 (2007)

    Article  MATH  Google Scholar 

  12. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    Article  MATH  Google Scholar 

  13. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In: NIPS (2014)

    Google Scholar 

  14. Sermanet, P., Frome, A., Real, E.: Attention for fine-grained categorization. arXiv preprint arXiv:1412.7054 (2014)

  15. Trapeznikov, K., Saligrama, V.: Supervised sequential classification under budget constraints. In: AISTATS (2013)

    Google Scholar 

  16. Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 4, 51–52 (2001)

    Google Scholar 

  17. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature hashing for large scale multitask learning. In: ICML. ACM (2009)

    Google Scholar 

  18. Weiss, D.J., Taskar, B.: Learning adaptive value of information for structured prediction. In: NIPS (2013)

    Google Scholar 

  19. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature selection for SVMs. In: NIPS (2000)

    Google Scholar 

  20. Xu, Z., Huang, G., Weinberger, K.Q., Zheng, A.X.: Gradient boosted feature selection. In: ACM SIGKDD (2014)

    Google Scholar 

  21. Xu, Z., Kusner, M.J., Weinberger, K.Q., Chen, M., Chapelle, O.: Classifier cascades and trees for minimizing feature evaluation cost. JMLR 15, 2113–2144 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Xu, Z., Weinberger, K., Chapelle, O.: The greedy miser: learning under test-time budgets. arXiv preprint arXiv:1206.6451 (2012)

  23. Yuan, M., Lin, Y.: Efficient empirical Bayes variable selection and estimation in linear models. J. Am. Stat. Assoc. 100, 100–1215 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., Sun, G.: A general boosting method and its application to learning ranking functions for web search. In: NIPS (2008)

    Google Scholar 

Download references

Acknowledgements

This article has been supported within the Labex SMART supported by French state funds managed by the ANR within the Investissements d’Avenir programme under reference ANR-11-LABX-65. Part of this work has benefited from a grant from program DGA-RAPID, project LuxidX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Contardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Contardo, G., Denoyer, L., Artières, T. (2016). Recurrent Neural Networks for Adaptive Feature Acquisition. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9949. Springer, Cham. https://doi.org/10.1007/978-3-319-46675-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46675-0_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46674-3

  • Online ISBN: 978-3-319-46675-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics