Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 930))

Abstract

Obtaining a freestanding 2D graphene flake is relatively easy because it has a naturally occurring 3D layered parent material, graphite, made up of graphene layers weakly bound to each other by van der Waals interaction. In fact, graphite is energetically more favorable than diamond (one the most stable and hard materials on Earth) that is the sp 3 hybridized allotrope of carbon. To prepare freestanding graphene, it is enough to come up with a smart procedure for isolating the weakly bound layers of graphite. The same is also true for other layered materials like hexagonal boron nitride, black phosphorus, metal dichalcogenides and oxides. Silicene, on the other hand, doesn’t have a naturally occurring 3D parent material since silicon atoms prefer sp 3 hybridization over sp 2 hybridization. This makes the synthesis of freestanding silicene very hard, if not impossible. However, it is possible to epitaxially grow silicene on metal substrates and make use of its intrinsic properties by transferring it to an insulating substrate (Tao et al. Nat Nanotechnol 10: 227–231, 2015). In this Chapter, we focus on intrinsic properties of freestanding silicene in the absence of the metallic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abersfelder, K., White, A.J.P., Rzepa, H.S., Scheschkewitz, D.: A tricyclic aromatic isomer of hexasilabenzene. Science 327, 564–566 (2010)

    Article  ADS  Google Scholar 

  • Allen, P.B., Berlijn, T., Casavant, D.A., Soler, J.M.: Recovering hidden Bloch character: unfolding electrons, phonons, and slabs. Phys. Rev. B 87, 085322 (2013)

    Article  ADS  Google Scholar 

  • An, R.L., Wang, X.F., Vasilopoulos, P., Liu, Y.S., Chen, A.B., Dong, Y.J., Zhai, M.X.: Vacancy effects on electric and thermoelectric properties of zigzag silicene nanoribbons. J. Phys. Chem. C 118, 21339–21346 (2014)

    Article  Google Scholar 

  • Barton, T.J., Burns, G.T.: Unambiguous generation and trapping of a silabenzene. J. Am. Chem. Soc. 100, 5246–5246 (1978)

    Article  Google Scholar 

  • Bianco, E., Butler, S., Jiang, S., Restrepo, O.D., Windl, W., Goldberger, J.E.: Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7, 4414–4421 (2013)

    Article  Google Scholar 

  • Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  • Brumfiel, G.: Sticky problem snares wonder material. Nature 495, 152–153 (2013)

    Article  ADS  Google Scholar 

  • Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  • Cahangirov, S., Topsakal, M., Ciraci, S.: Armchair nanoribbons of silicon and germanium honeycomb structures. Phys. Rev. B 81, 195120 (2010)

    Article  ADS  Google Scholar 

  • Cahangirov, S., Özçelik, V.O., Xian, L., Avila, J., Cho, S., Asensio, M.C., Ciraci, S., Rubio, A.: Atomic structure of the \(\sqrt{3}\phantom{ \times }\sqrt{3}\) phase of silicene on Ag(111). Phys. Rev. B 90, 035448 (2014)

    Article  ADS  Google Scholar 

  • Chen, L., Liu, C.C., Feng, B., He, X., Cheng, P., Ding, Z., Meng, S., Yao, Y., Wu, K.: Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 109, 056804 (2012)

    Article  ADS  Google Scholar 

  • Cudazzo, P., Attaccalite, C., Tokatly, I.V., Rubio, A.: Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphane. Phys. Rev. Lett. 104, 226804 (2010)

    Article  ADS  Google Scholar 

  • Drummond, N.D., Zólyomi, V., Fal’ko, V.I.: Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012)

    Article  ADS  Google Scholar 

  • Du, Y., Zhuang, J., Liu, H., Xu, X., Eilers, S., Wu, K., Cheng, P., Zhao, J., Pi, X., See, K.W., Peleckis, G., Wang, X., Dou, S.X.: Tuning the band gap in silicene by oxidation. ACS Nano 8, 10019–10025 (2014)

    Article  Google Scholar 

  • Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., Novoselov, K.S.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009)

    Article  ADS  Google Scholar 

  • Ezawa, M.: Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. 109, 055502 (2012)

    Article  ADS  Google Scholar 

  • Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L., Wu, K.: Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 3507–3511 (2012)

    Article  ADS  Google Scholar 

  • Guzmán-Verri, G.G., Lew Yan Voon, L.C.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007)

    Google Scholar 

  • Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  • Hoffmann, R.: Small but strong lessons from chemistry for nanoscience. Angew. Chem. Int. Ed. 52, 93–103 (2013)

    Article  ADS  Google Scholar 

  • Houssa, M., Scalise, E., Sankaran, K., Pourtois, G., Afanas’ev, V.V., Stesmans, A.: Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 98, 223107 (2011)

    Article  ADS  Google Scholar 

  • Hu, M., Zhang, X., Poulikakos, D.: Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 87, 195417 (2013)

    Article  ADS  Google Scholar 

  • Huang, B., Deng, H.X., Lee, H., Yoon, M., Sumpter, B.G., Liu, F., Smith, S.C., Wei, S.H.: Exceptional optoelectronic properties of hydrogenated bilayer silicene. Phys. Rev. X 4, 021029 (2014)

    Google Scholar 

  • Jahn, H.A., Teller, E.: Stability of polyatomic molecules in degenerate electronic states. I. orbital degeneracy. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 161, 220–235 (1937)

    Article  MATH  Google Scholar 

  • Kaltsas, D., Tsetseris, L.: Stability and electronic properties of ultrathin films of silicon and germanium. Phys. Chem. Chem. Phys. 15, 9710–9715 (2013)

    Article  Google Scholar 

  • Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  • Krüger, P., Pollmann, J.: Dimer reconstruction of diamond, Si, and Ge (001) surfaces. Phys. Rev. Lett. 74, 1155–1158 (1995)

    Article  ADS  Google Scholar 

  • Lander, J.J., Gobeli, G.W., Morrison, J.: Structural properties of cleaved silicon and germanium surfaces. J. Appl. Phys. 34 (1963)

    Google Scholar 

  • Lew Yan Voon, L.C., Sandberg, E., Aga, R.S., Farajian, A.A.: Hydrogen compounds of group-iv nanosheets. Appl. Phys. Lett. 97, 163114 (2010)

    Google Scholar 

  • Li, B., Zhou, L., Wu, D., Peng, H., Yan, K., Zhou, Y., Liu, Z.: Photochemical chlorination of graphene. ACS Nano 5, 5957–5961 (2011)

    Article  Google Scholar 

  • Liu, C.C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)

    Article  ADS  Google Scholar 

  • Liu, B., Baimova, J.A., Reddy, C.D., Law, A.W.K., Dmitriev, S.V., Wu, H., Zhou, K.: Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation. ACS Appl. Mater. Interfaces 6, 18180–18188 (2014)

    Article  Google Scholar 

  • Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    Article  ADS  Google Scholar 

  • Morishita, T., Spencer, M.J.S.: How silicene on Ag(111) oxidizes: microscopic mechanism of the reaction of O2 with silicene. Sci. Rep. 5, 17570 (2015)

    Article  ADS  Google Scholar 

  • Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Cheng, H.M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., Geim, A.K.: Fluorographene: a two-dimensional counterpart of teflon. Small 6, 2877–2884 (2010)

    Article  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  • Özçelik, V.O., Ciraci, S.: Local reconstructions of silicene induced by adatoms. J. Phys. Chem. C 117, 26305–26315 (2013)

    Article  Google Scholar 

  • Özçelik, V.O., Gurel, H.H., Ciraci, S.: Self-healing of vacancy defects in single-layer graphene and silicene. Phys. Rev. B 88, 045440 (2013)

    Article  ADS  Google Scholar 

  • Özçelik, V.O., Cahangirov, S., Ciraci, S.: Stable single-layer honeycomblike structure of silica. Phys. Rev. Lett. 112, 246803 (2014)

    Article  ADS  Google Scholar 

  • Pandey, K.C.: New π-bonded chain model for si(111)-(2×1) surface. Phys. Rev. Lett. 47, 1913–1917 (1981)

    Article  ADS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  • Phillips, J.: Excitonic instabilities, vacancies, and reconstruction of covalent surfaces. Surf. Sci. 40, 459–469 (1973)

    Article  ADS  Google Scholar 

  • Poppendieck, T.D., Ngoc, T.C., Webb, M.B.: An electron diffraction study of the structure of silicon (100). Surf. Sci. 75, 287–315 (1978)

    Article  ADS  Google Scholar 

  • Qiu, J., Fu, H., Xu, Y., Oreshkin, A.I., Shao, T., Li, H., Meng, S., Chen, L., Wu, K.: Ordered and reversible hydrogenation of silicene. Phys. Rev. Lett. 114, 126101 (2015)

    Article  ADS  Google Scholar 

  • Sahin, H., Peeters, F.M.: Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys. Rev. B 87, 085423 (2013)

    Article  ADS  Google Scholar 

  • Sahin, H., Sivek, J., Li, S., Partoens, B., Peeters, F.M.: Stone-Wales defects in silicene: Formation, stability, and reactivity of defect sites. Phys. Rev. B 88, 045434 (2013)

    Article  ADS  Google Scholar 

  • Sahin, H., Leenaerts, O., Singh, S.K., Peeters, F.M.: Graphane. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5, 255–272 (2015)

    Article  Google Scholar 

  • Schlier, R.E., Farnsworth, H.E.: Structure and adsorption characteristics of clean surfaces of germanium and silicon. J. Chem. Phys. 30, 917 (1959)

    Article  ADS  Google Scholar 

  • Si, C., Liu, J., Xu, Y., Wu, J., Gu, B.L., Duan, W.: Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 89, 115429 (2014)

    Article  ADS  Google Scholar 

  • Sivek, J., Sahin, H., Partoens, B., Peeters, F.M.: Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties. Phys. Rev. B 87, 085444 (2013)

    Article  ADS  Google Scholar 

  • Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)

    Article  ADS  Google Scholar 

  • Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006a)

    Article  ADS  Google Scholar 

  • Son, Y.W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006b)

    Article  ADS  Google Scholar 

  • Takayanagi, K., Tanishiro, Y., Takahashi, S., Takahashi, M.: Structure analysis of Si(111)-7×7 reconstructed surface by transmission electron diffraction. Surf. Sci. 164, 367–392 (1985)

    Article  ADS  Google Scholar 

  • Takeda, K., Shiraishi, K.: Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50, 14916–14922 (1994)

    Article  ADS  Google Scholar 

  • Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D.: Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015)

    Article  ADS  Google Scholar 

  • Vogt, P., Capiod, P., Berthe, M., Resta, A., De Padova, P., Bruhn, T., Le Lay, G., Grandidier, B.: Synthesis and electrical conductivity of multilayer silicene. Appl. Phys. Lett. 104, 021602 (2014)

    Article  ADS  Google Scholar 

  • Wang, R., Pi, X., Ni, Z., Liu, Y., Lin, S., Xu, M., Yang, D.: Silicene oxides: formation, structures and electronic properties. Sci. Rep. 3 (2013)

    Google Scholar 

  • Wang, X., Liu, H., Tu, S.T.: First-principles study of half-fluorinated silicene sheets. RSC Adv. 5, 6238–6245 (2015)

    Article  Google Scholar 

  • Wei, W., Jacob, T.: Strong many-body effects in silicene-based structures. Phys. Rev. B 88, 045203 (2013)

    Article  ADS  Google Scholar 

  • Wierzbicki, M., Barnaś, J., Swirkowicz, R.: Thermoelectric properties of silicene in the topological- and band-insulator states. Phys. Rev. B 91, 165417 (2015)

    Article  ADS  Google Scholar 

  • Xu, X., Zhuang, J., Du, Y., Feng, H., Zhang, N., Liu, C., Lei, T., Wang, J., Spencer, M., Morishita, T., Wang, X., Dou, S.X.: Effects of oxygen adsorption on the surface state of epitaxial silicene on Ag(111). Sci. Rep. 4, 7543 (2014)

    Article  ADS  Google Scholar 

  • Yang, K., Cahangirov, S., Cantarero, A., Rubio, A., D’Agosta, R.: Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 89, 125403 (2014)

    Article  ADS  Google Scholar 

  • Zberecki, K., Wierzbicki, M., Barnaś, J., Swirkowicz, R.: Thermoelectric effects in silicene nanoribbons. Phys. Rev. B 88, 115404 (2013)

    Article  ADS  Google Scholar 

  • Zberecki, K., Swirkowicz, R., Barnaś, J.: Spin effects in thermoelectric properties of Al- and P-doped zigzag silicene nanoribbons. Phys. Rev. B 89, 165419 (2014a)

    Article  ADS  Google Scholar 

  • Zberecki, K., Swirkowicz, R., Wierzbicki, M., Barnas, J.: Enhanced thermoelectric efficiency in ferromagnetic silicene nanoribbons terminated with hydrogen atoms. Phys. Chem. Chem. Phys. 16, 12900–12908 (2014b)

    Article  Google Scholar 

  • Zhang, C.W., Yan, S.S.: First-principles study of ferromagnetism in two-dimensional silicene with hydrogenation. J. Phys. Chem. C 116, 4163–4166 (2012)

    Article  Google Scholar 

  • Zhang, R.Q., Chu, T.S., Cheung, H.F., Wang, N., Lee, S.T.: High reactivity of silicon suboxide clusters. Phys. Rev. B 64, 113304 (2001)

    Article  ADS  Google Scholar 

  • Zhang, P., Li, X., Hu, C., Wu, S., Zhu, Z.: First-principles studies of the hydrogenation effects in silicene sheets. Phys. Lett. A 376, 1230–1233 (2012)

    Article  ADS  Google Scholar 

  • Zheng, F.B., Zhang, C.W., Yan, S.S., Li, F.: Novel electronic and magnetic properties in N or B doped silicene nanoribbons. J. Mater. Chem. C 1, 2735–2743 (2013)

    Article  Google Scholar 

  • Zhang, W.B., Song, Z.B., Dou, L.M.: The tunable electronic structure and mechanical properties of halogenated silicene: a first-principles study. J. Mater. Chem. C 3, 3087–3094 (2015)

    Article  Google Scholar 

  • Zólyomi, V.Z., Wallbank, J.R., Fal’ko, V.I.: Silicane and germanane: tight-binding and first-principles studies. 2D Materials 1, 011005 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cahangirov, S., Sahin, H., Le Lay, G., Rubio, A. (2017). Freestanding Silicene. In: Introduction to the Physics of Silicene and other 2D Materials. Lecture Notes in Physics, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-319-46572-2_2

Download citation

Publish with us

Policies and ethics