Skip to main content

Antibody Recognition of Immunodominant Vaccinia Virus Envelope Proteins

  • Chapter
  • First Online:
Macromolecular Protein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 83))

Abstract

Vaccinia Virus (VACV) is an enveloped double stranded DNA virus and the active ingredient of the smallpox vaccine. The systematic administration of this vaccine led to the eradication of circulating smallpox (variola virus, VARV) from the human population. As a tribute to its success, global immunization was ended in the late 1970s. The efficacy of the vaccine is attributed to a robust production of protective antibodies against several envelope proteins of VACV, which cross-protect against infection with pathogenic VARV. Since global vaccination was ended, most children and young adults do not possess immunity against smallpox. This is a concern, since smallpox is considered a potential bioweapon. Although the smallpox vaccine is considered the gold standard of all vaccines and the targeted antigens have been widely studied, the epitopes that are targeted by the protective antibodies and their mechanism of binding had been, until recently, poorly characterized. Understanding the precise interaction between the antibodies and their epitopes will be helpful in the design of better vaccines against other diseases. In this review we will discuss the structural basis of recognition of the immunodominant VACV antigens A27, A33, D8, and L1 by protective antibodies and discuss potential implications regarding their protective capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

VACV:

Vaccinia virus

VARV:

variola virus

MPXV:

monkeypox virus

ECTV:

ectromelia virus

MAb:

monoclonal antibody

IMV:

intracellular mature virus

EEV:

extracellular enveloped virus

GAG:

glycosaminoglycan

HS:

heparan sulfate

CS:

chondroitin sulfate

GlcA:

glucuronic acid

GalNAc:

N-acetyl galactosamine

HC:

heavy chain

LC:

light chain

CDR:

complementarity determining region

H:

hydrogen (bond)

vdW:

van der Waals

BSA:

buried surface area

sc:

shape correlation

Fab:

fragment of antigen binding

KD :

equilibrium binding constant

EFC:

entry fusion complex

SAM:

single alanine scanning mutagenesis

References

  • Aldaz-Carroll L, Whitbeck JC, Ponce de Leon M, Lou H, Pannell LK, Lebowitz J, Fogg C, White CL, Moss B, Cohen GH, Eisenberg RJ (2005) Physical and immunological characterization of a recombinant secreted form of the membrane protein encoded by the vaccinia virus L1R gene. Virology 341(1):59–71. doi:S0042-6822(05)00416-2 [pii]10.1016/j.virol.2005.07.006

  • Benhnia MR, McCausland MM, Su HP, Singh K, Hoffmann J, Davies DH, Felgner PL, Head S, Sette A, Garboczi DN, Crotty S (2008) Redundancy and plasticity of neutralizing antibody responses are cornerstone attributes of the human immune response to the smallpox vaccine. J Virol 82(7):3751–3768. doi:10.1128/JVI.02244-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisht H, Weisberg AS, Moss B (2008a) Vaccinia virus l1 protein is required for cell entry and membrane fusion. J Virol 82(17):8687–8694. doi:10.1128/JVI.00852-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisht H, Weisberg AS, Moss B (2008b) Vaccinia virus l1 protein is required for cell entry and membrane fusion. J Virol 82(17):8687–8694. doi:10.1128/JVI.00852-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown E, Senkevich TG, Moss B (2006) Vaccinia virus F9 virion membrane protein is required for entry but not virus assembly, in contrast to the related L1 protein. J Virol 80(19):9455–9464. doi:10.1128/JVI.01149-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan WM, Ward BM (2010) There is an A33-dependent mechanism for the incorporation of B5-GFP into vaccinia virus extracellular enveloped virions. Virology 402(1):83–93. doi:10.1016/j.virol.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan WM, Kalkanoglu AE, Ward BM (2010) The inability of vaccinia virus A33R protein to form intermolecular disulfide-bonded homodimers does not affect the production of infectious extracellular virus. Virology 408(1):109–118. doi:10.1016/j.virol.2010.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang TH, Chang SJ, Hsieh FL, Ko TP, Lin CT, Ho MR, Wang I, Hsu ST, Guo RT, Chang W, Wang AH (2013) Crystal structure of vaccinia viral A27 protein reveals a novel structure critical for its function and complex formation with A26 protein. PLoS Pathog 9(8):e1003563. doi:10.1371/journal.ppat.1003563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu WL, Lin CL, Yang MH, Tzou DL, Chang W (2007) Vaccinia virus 4c (A26L) protein on intracellular mature virus binds to the extracellular cellular matrix laminin. J Virol 81(5):2149–2157. doi:10.1128/JVI.02302-06

    Article  CAS  PubMed  Google Scholar 

  • Davies DR, Padlan EA, Sheriff S (1990) Antibody-antigen complexes. Annu Rev Biochem 59:439–473. doi:10.1146/annurev.bi.59.070190.002255

    Article  CAS  PubMed  Google Scholar 

  • Davies DH, Liang X, Hernandez JE, Randall A, Hirst S, Mu Y, Romero KM, Nguyen TT, Kalantari-Dehaghi M, Crotty S, Baldi P, Villarreal LP, Felgner PL (2005) Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci U S A 102(3):547–552. doi:10.1073/pnas.0408782102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies DH, Molina DM, Wrammert J, Miller J, Hirst S, Mu Y, Pablo J, Unal B, Nakajima-Sasaki R, Liang X, Crotty S, Karem KL, Damon IK, Ahmed R, Villarreal L, Felgner PL (2007) Proteome-wide analysis of the serological response to vaccinia and smallpox. Proteomics 7(10):1678–1686. doi:10.1002/pmic.200600926

    Article  CAS  PubMed  Google Scholar 

  • Franke CA, Wilson EM, Hruby DE (1990) Use of a cell-free system to identify the vaccinia virus L1R gene product as the major late myristylated virion protein M25. J Virol 64(12):5988–5996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson DA (2011) The eradication of smallpox--an overview of the past, present, and future. Vaccine 29(Suppl 4):D7–D9. doi:10.1016/j.vaccine.2011.06.080

    Article  PubMed  Google Scholar 

  • Howard AR, Senkevich TG, Moss B (2008) Vaccinia virus A26 and A27 proteins form a stable complex tethered to mature virions by association with the A17 transmembrane protein. J Virol 82(24):12384–12391. doi:10.1128/JVI.01524-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao JC, Chung CS, Chang W (1998) Cell surface proteoglycans are necessary for A27L protein-mediated cell fusion: identification of the N-terminal region of A27L protein as the glycosaminoglycan-binding domain. J Virol 72(10):8374–8379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao JC, Chung CS, Chang W (1999) Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol 73(10):8750–8761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichihashi Y, Oie M (1996) Neutralizing epitope on penetration protein of vaccinia virus. Virology 220(2):491–494. doi:10.1006/viro.1996.0337

    Article  CAS  PubMed  Google Scholar 

  • Isaacs SN, Wolffe EJ, Payne LG, Moss B (1992) Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J Virol 66(12):7217–7224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izmailyan RA, Huang CY, Mohammad S, Isaacs SN, Chang W (2006) The envelope G3 L protein is essential for entry of vaccinia virus into host cells. J Virol 80(17):8402–8410. doi:10.1128/JVI.00624-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93(1):13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaever T, Meng X, Matho MH, Schlossman A, Li S, Sela-Culang I, Ofran Y, Buller M, Crump RW, Parker S, Frazier A, Crotty S, Zajonc DM, Peters B, Xiang Y (2014) Potent neutralization of vaccinia virus by divergent murine antibodies targeting a common site of vulnerability in L1 protein. J Virol 88(19):11339–11355. doi:10.1128/JVI.01491-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaever T, Matho MH, Meng X, Crickard L, Schlossman A, Xiang Y, Crotty S, Peters B, Zajonc DM (2016) Linear epitopes in A27 are targets of protective antibodies induced by vaccination against smallpox. J Virol. doi:10.1128/JVI.02878-15

    PubMed  PubMed Central  Google Scholar 

  • Kumagai I, Tsumoto K (2001) Antigen–Antibody Binding. In: eLS. John Wiley & Sons, Ltd. doi:10.1002/9780470015902.a0001117.pub2

  • Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234(4):946–950. doi:S0022-2836(83)71648-7[pii]10.1006/jmbi.1993.1648

  • Lawrence SJ, Lottenbach KR, Newman FK, Buller RM, Bellone CJ, Chen JJ, Cohen GH, Eisenberg RJ, Belshe RB, Stanley SL Jr, Frey SE (2007) Antibody responses to vaccinia membrane proteins after smallpox vaccination. J Inf Dis 196(2):220–229. doi:10.1086/518793

    Article  CAS  Google Scholar 

  • Lee PS, Ohshima N, Stanfield RL, Yu W, Iba Y, Okuno Y, Kurosawa Y, Wilson IA (2014) Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nat Commun 5:3614. doi:10.1038/ncomms4614

    PubMed  PubMed Central  Google Scholar 

  • Lin CL, Chung CS, Heine HG, Chang W (2000) Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J Virol 74(7):3353–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matho MH, Maybeno M, Benhnia MR, Becker D, Meng X, Xiang Y, Crotty S, Peters B, Zajonc DM (2012) Structural and biochemical characterization of the vaccinia virus envelope protein D8 and its recognition by the antibody LA5. J Virol 86(15):8050–8058. doi:10.1128/JVI.00836-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matho MH, de Val N, Miller GM, Brown J, Schlossman A, Meng X, Crotty S, Peters B, Xiang Y, Hsieh-Wilson LC, Ward AB, Zajonc DM (2014) Murine anti-vaccinia virus D8 antibodies target different epitopes and differ in their ability to block D8 binding to CS-E. PLoS Pathog 10(12):e1004495. doi:10.1371/journal.ppat.1004495

  • Matho MH, Schlossman A, Meng X, Benhnia MR, Kaever T, Buller M, Doronin K, Parker S, Peters B, Crotty S, Xiang Y, Zajonc DM (2015) Structural and functional characterization of anti-a33 antibodies reveal a potent cross-species orthopoxviruses neutralizer. PLoS Pathog 11(9):e1005148. doi:10.1371/journal.ppat.1005148

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng X, Zhong Y, Embry A, Yan B, Lu S, Zhong G, Xiang Y (2011) Generation and characterization of a large panel of murine monoclonal antibodies against vaccinia virus. Virology 409(2):271–279. doi:10.1016/j.virol.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  • Meyer H, Osterrieder N, Czerny CP (1994) Identification of binding sites for neutralizing monoclonal antibodies on the 14-kDa fusion protein of orthopox viruses. Virology 200(2):778–783. doi:10.1006/viro.1994.1241

    Article  CAS  PubMed  Google Scholar 

  • Nichols RJ, Stanitsa E, Unger B, Traktman P (2008) The vaccinia virus gene I2L encodes a membrane protein with an essential role in virion entry. J Virol 82(20):10247–10261. doi:10.1128/JVI.01035-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niles EG, Seto J (1988) Vaccinia virus gene D8 encodes a virion transmembrane protein. J Virol 62(10):3772–3778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ojeda S, Domi A, Moss B (2006a) Vaccinia virus G9 protein is an essential component of the poxvirus entry-fusion complex. J Virol 80(19):9822–9830. doi:10.1128/JVI.00987-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojeda S, Senkevich TG, Moss B (2006b) Entry of vaccinia virus and cell-cell fusion require a highly conserved cysteine-rich membrane protein encoded by the A16L gene. J Virol 80(1):51–61. doi:10.1128/JVI.80.1.51-61.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne LG (1992) Characterization of vaccinia virus glycoproteins by monoclonal antibody precipitation. Virology 187(1):251–260

    Article  CAS  PubMed  Google Scholar 

  • Putz MM, Midgley CM, Law M, Smith GL (2006) Quantification of antibody responses against multiple antigens of the two infectious forms of Vaccinia virus provides a benchmark for smallpox vaccination. Nat Med 12(11):1310–1315. doi:10.1038/nm1457

    Article  PubMed  Google Scholar 

  • Rodriguez JF, Esteban M (1987) Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. J Virol 61(11):3550–3554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez JF, Janeczko R, Esteban M (1985) Isolation and characterization of neutralizing monoclonal antibodies to vaccinia virus. J Virol 56(2):482–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez JR, Rodriguez D, Esteban M (1992) Insertional inactivation of the vaccinia virus 32-kilodalton gene is associated with attenuation in mice and reduction of viral gene expression in polarized epithelial cells. J Virol 66(1):183–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roper RL, Payne LG, Moss B (1996) Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J Virol 70(6):3753–3762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roper RL, Wolffe EJ, Weisberg A, Moss B (1998) The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. J Virol 72(5):4192–4204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satheshkumar PS, Moss B (2009) Characterization of a newly identified 35-amino-acid component of the vaccinia virus entry/fusion complex conserved in all chordopoxviruses. J Virol 83(24):12822–12832. doi:10.1128/JVI.01744-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sela-Culang I, Benhnia MR, Matho MH, Kaever T, Maybeno M, Schlossman A, Nimrod G, Li S, Xiang Y, Zajonc D, Crotty S, Ofran Y, Peters B (2014) Using a combined computational-experimental approach to predict antibody-specific B cell epitopes. Structure. doi:10.1016/j.str.2014.02.003

    PubMed  Google Scholar 

  • Senkevich TG, Moss B (2005) Vaccinia virus H2 protein is an essential component of a complex involved in virus entry and cell-cell fusion. J Virol 79(8):4744–4754. doi:10.1128/JVI.79.8.4744-4754.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senkevich TG, Ward BM, Moss B (2004) Vaccinia virus A28L gene encodes an essential protein component of the virion membrane with intramolecular disulfide bonds formed by the viral cytoplasmic redox pathway. J Virol 78(5):2348–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senkevich TG, Ojeda S, Townsley A, Nelson GE, Moss B (2005) Poxvirus multiprotein entry-fusion complex. Pro Natl Acad Sci U S A 102(51):18572–18577. doi:10.1073/pnas.0509239102

    Article  CAS  Google Scholar 

  • Su HP, Garman SC, Allison TJ, Fogg C, Moss B, Garboczi DN (2005) The 1.51-Angstrom structure of the poxvirus L1 protein, a target of potent neutralizing antibodies. Proc Natl Acad Sci U S A 102(12):4240–4245. doi:10.1073/pnas.0501103102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su HP, Golden JW, Gittis AG, Hooper JW, Garboczi DN (2007) Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein. Virology 368 (2):331–341. doi:S0042-6822(07)00439-4[pii]10.1016/j.virol.2007.06.042 [doi]

  • Su HP, Singh K, Gittis AG, Garboczi DN (2010) The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains. J Virol 84, 2009/12/25 edn. doi:10.1128/JVI.02247–09

    Google Scholar 

  • Sundberg EJ, Mariuzza RA (2002) Molecular recognition in antibody-antigen complexes. Adv Protein Chem 61:119–160

    Article  PubMed  Google Scholar 

  • Townsley AC, Senkevich TG, Moss B (2005a) The product of the vaccinia virus L5R gene is a fourth membrane protein encoded by all poxviruses that is required for cell entry and cell-cell fusion. J Virol 79(17):10988–10998. doi:10.1128/JVI.79.17.10988-10998.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsley AC, Senkevich TG, Moss B (2005b) Vaccinia virus A21 virion membrane protein is required for cell entry and fusion. J Virol 79(15):9458–9469. doi:10.1128/JVI.79.15.9458-9469.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DR, Hsiao JC, Wong CH, Li GC, Lin SC, Yu SS, Chen W, Chang W, Tzou DL (2014) Vaccinia viral protein A27 is anchored to the viral membrane via a cooperative interaction with viral membrane protein A17. J Biol Chem 289(10):6639–6655. doi:10.1074/jbc.M114.547372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolffe EJ, Vijaya S, Moss B (1995) A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology 211(1):53–63. doi:10.1006/viro.1995.1378

    Article  CAS  PubMed  Google Scholar 

  • Wolffe EJ, Weisberg AS, Moss B (1998) Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology 244(1):20–26. doi:10.1006/viro.1998.9103

    Article  CAS  PubMed  Google Scholar 

  • Wolffe EJ, Weisberg AS, Moss B (2001) The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. J Virol 75(1):303–310. doi:10.1128/JVI.75.1.303-310.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Bjoern Peters, Yan Xiang, Shane Crotty and Mark Buller for a terrific collaboration and all lab members, especially Michael H. Matho, Tom Kaever, Xiangzhi Meng and Andrew Schlossman without whom the studies would have been nearly impossible. Many thanks also to Yan Xiang for critically reading the manuscript. This project has been funded in whole or in part with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract no. HHSN272200900048C

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk M. Zajonc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zajonc, D.M. (2017). Antibody Recognition of Immunodominant Vaccinia Virus Envelope Proteins. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes. Subcellular Biochemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-46503-6_4

Download citation

Publish with us

Policies and ethics