Skip to main content

Novel Strategies to Prevent, Mitigate or Reverse Radiation Injury and Fibrosis

  • Chapter
  • First Online:
Strategies to Enhance the Therapeutic Ratio of Radiation as a Cancer Treatment

Abstract

Despite recent advances in Radiation Oncology with treatment planning and delivery of image-guided radiation therapy, acute tissue toxicity is still a dose-limiting factor for optimal local tumor control. Additionally, as the number of long-term cancer survivors is increasing, unacceptable complications emerge and dramatically impair the patients’ quality of life. This means patients and clinicians expect therapeutic management of radiation-induced complications. Over the past four decades, research has enhanced our understanding of the pathophysiological, cellular and molecular processes governing normal tissue toxicity. This knowledge has provided us with tools to improve the therapeutic ratio of radiation therapy by enhancing its tumoricidal effect and protecting normal tissue. In this chapter, we review biology-driven efforts to develop translatable therapeutic approaches to prevent, mitigate or reverse radiation injury based upon cellular and signalling pathways targeting. We also highlight innovative approaches based upon manipulating external contributors such as the microbiota and applying novel radiotherapy delivery procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quastler H, Lanzl EF, Keller ME, Osborne JW. Acute intestinal radiation death. Studies on roentgen death in mice, III. Am J Physiol. 1951;164:546–56.

    CAS  PubMed  Google Scholar 

  2. Rubin P, Casarett G. Clinical radiation pathology. In: Co WS, editor. Philadelphia; 1968. pp. 193–240.

    Google Scholar 

  3. Fowler JF, Bewley DK, Morgan RL, Silvester JA, Alper T, Hornsey S. Dose-effect relationships for radiation damage to organized tissues. Nature. 1963;199:253–5.

    Article  CAS  PubMed  Google Scholar 

  4. Stewart FA, Michael BD, Denekamp J. Late radiation damage in the mouse bladder as measured by increased urination frequency. Radiat Res. 1978;75:649–59.

    Article  CAS  PubMed  Google Scholar 

  5. Fajardo LG. Pathology of radiation injury. In: Sternberg SS, editor. Masson monographs in diagnostic pathology. Chicago: Year Book Medical publisher; 1982. p. 47–76.

    Google Scholar 

  6. Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, Malard O, Stewart F, Tamarat R, Luijk PV, Limoli CL. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal. 2014;21:338–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, Fike JR. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol. 2004;188:316–30.

    Article  CAS  PubMed  Google Scholar 

  8. Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, Rowley H, Kundapur V, DeNittis A, Greenspoon JN, Konski AA, Bauman GS, Shah S, Shi W, Wendland M, Kachnic L, Mehta MP. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32:3810–6.

    Article  Google Scholar 

  9. Cramer CK, Yoon SW, Reinsvold M, Joo KM, Norris H, Hood RC, Adamson JD, Klein RC, Kirsch DG, Oldham M. Treatment planning and delivery of whole brain irradiation with hippocampal avoidance in rats. PLoS One. 2015;10, e0143208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008;3, e2063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Booth C, Booth D, Williamson S, Demchyshyn LL, Potten CS. Teduglutide ([gly2]glp-2) protects small intestinal stem cells from radiation damage. Cell Prolif. 2004;37:385–400.

    Article  CAS  PubMed  Google Scholar 

  12. Torres S, Thim L, Milliat F, Vozenin-Brotons MC, Olsen UB, Ahnfelt-Ronne I, Bourhis J, Benderitter M, Francois A. Glucagon-like peptide-2 improves both acute and late experimental radiation enteritis in the rat. Int J Radiat Oncol Biol Phys. 2007;69:1563–71.

    Article  CAS  PubMed  Google Scholar 

  13. Kantara C, Moya SM, Houchen CW, Umar S, Ullrich RL, Singh P, Carney DH. Novel regenerative peptide tp508 mitigates radiation-induced gastrointestinal damage by activating stem cells and preserving crypt integrity. Lab Invest. 2015;95:1222–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taniguchi CM, Miao YR, Diep AN, Wu C, Rankin EB, Atwood TF, Xing L, Giaccia AJ. PhD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via hif2. Sci Transl Med. 2014;6:236ra264.

    Article  CAS  Google Scholar 

  15. Akita S, Akino K, Hirano A, Ohtsuru A, Yamashita S. Noncultured autologous adipose-derived stem cells therapy for chronic radiation injury. Stem Cells Int. 2010;2010:532704.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Benderitter M, Gourmelon P, Bey E, Chapel A, Clairand I, Prat M, Lataillade JJ. New emerging concepts in the medical management of local radiation injury. Health Phys. 2010;98:851–7.

    Article  CAS  PubMed  Google Scholar 

  17. Caviggioli F, Maione L, Forcellini D, Klinger F, Klinger M. Autologous fat graft in postmastectomy pain syndrome. Plast Reconstr Surg. 2011;128:349–52.

    Article  CAS  PubMed  Google Scholar 

  18. Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, Andre M, Cousin B, Gourmelon P, Benderitter M, Casteilla L, Tamarat R. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol. 2009;29:503–10.

    Article  CAS  PubMed  Google Scholar 

  19. Klinger M, Caviggioli F, Vinci V, Salval A, Villani F. Treatment of chronic posttraumatic ulcers using autologous fat graft. Plast Reconstr Surg. 2010;126:154–5.

    Article  CAS  Google Scholar 

  20. Acharya MM, Christie LA, Lan ML, Limoli CL. Comparing the functional consequences of human stem cell transplantation in the irradiated rat brain. Cell Transplant. 2013;22:55–64.

    Article  PubMed  Google Scholar 

  21. Gorin NC. [Bone marrow autograft. Current status and perspectives]. Nouv Rev Fr Hematol. 1983;25:391–9.

    CAS  PubMed  Google Scholar 

  22. Banh A, Xiao N, Cao H, Chen CH, Kuo P, Krakow T, Bavan B, Khong B, Yao M, Ha C, Kaplan MJ, Sirjani D, Jensen K, Kong CS, Mochly-Rosen D, Koong AC, Le QT. A novel aldehyde dehydrogenase-3 activator leads to adult salivary stem cell enrichment in vivo. Clin Cancer Res. 2011;17:7265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coppes RP, Stokman MA. Stem cells and the repair of radiation-induced salivary gland damage. Oral Dis. 2011;17:143–53.

    Article  CAS  PubMed  Google Scholar 

  24. Espitalier F, Vinatier C, Lerouxel E, Guicheux J, Pilet P, Moreau F, Daculsi G, Weiss P, Malard O. A comparison between bone reconstruction following the use of mesenchymal stem cells and total bone marrow in association with calcium phosphate scaffold in irradiated bone. Biomaterials. 2009;30:763–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lombaert IM, Knox SM, Hoffman MP. Salivary gland progenitor cell biology provides a rationale for therapeutic salivary gland regeneration. Oral Dis. 2011;17:445–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pringle S, Van Os R, Coppes RP. Concise review: adult salivary gland stem cells and a potential therapy for xerostomia. Stem Cells. 2013;31:613–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gao Z, Zhang Q, Han Y, Cheng X, Lu Y, Fan L, Wu Z. Mesenchymal stromal cell-conditioned medium prevents radiation-induced small intestine injury in mice. Cytotherapy. 2012;14:267–73.

    Article  CAS  PubMed  Google Scholar 

  28. Kudo K, Liu Y, Takahashi K, Tarusawa K, Osanai M, Hu DL, Kashiwakura I, Kijima H, Nakane A. Transplantation of mesenchymal stem cells to prevent radiation-induced intestinal injury in mice. J Radiat Res. 2010;51:73–9.

    Article  PubMed  Google Scholar 

  29. Semont A, Mouiseddine M, Francois A, Demarquay C, Mathieu N, Chapel A, Sache A, Thierry D, Laloi P, Gourmelon P. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ. 2010;17:952–61.

    Article  CAS  PubMed  Google Scholar 

  30. Linard C, Busson E, Holler V, Strup-Perrot C, Lacave-Lapalun JV, Lhomme B, Prat M, Devauchelle P, Sabourin JC, Simon JM, Bonneau M, Lataillade JJ, Benderitter M. Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Transl Med. 2013;2:916–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olivier MP. Curative treatment of osteoradionecrosis (orn) with hybrid bone substitution. NCT01147315: NCT01147315; 2010–2015.

    Google Scholar 

  32. IJ F. Hepatocyte transplantation for liver based meta- bolic diosorders. NCT01345578: NCT01345578; 2011.

    Google Scholar 

  33. Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A, Frick J, Sache A, Bouchet S, Thierry D, Gourmelon P, Gorin NC, Chapel A. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: A study of their quantitative distribution after irradiation damage. Stem Cells. 2006;24:1020–9.

    Article  PubMed  Google Scholar 

  34. Tsoutsou PG, Koukourakis MI. Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys. 2006;66:1281–93.

    Article  PubMed  Google Scholar 

  35. Gervaz P, Morel P, Vozenin-Brotons MC. Molecular aspects of intestinal radiation-induced fibrosis. Curr Mol Med. 2009;9:273–80.

    Article  CAS  PubMed  Google Scholar 

  36. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97:149–61.

    Article  CAS  PubMed  Google Scholar 

  37. Fajardo LF. The endothelial cell is a unique target of radiation: an overview. In: Rubin DB, editor. The radiation biology of the vascular endothelium. Boca Raton: CRC; 1998. p. 1–13.

    Google Scholar 

  38. Trott KR, Doerr W, Facoetti A, Hopewell J, Langendijk J, van Luijk P, Ottolenghi A, Smyth V. Biological mechanisms of normal tissue damage: importance for the design of ntcp models. Radiother Oncol. 2012;105:79–85.

    Article  PubMed  Google Scholar 

  39. Authors on behalf of I, Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012;41:1–322.

    Google Scholar 

  40. Hauer-Jensen M, Kumar KS. Targets of potential radioprotective drugs. Curr Drug Targets. 2010;11:1351.

    Article  CAS  PubMed  Google Scholar 

  41. Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene. 2003;22:5897–906.

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Boerma M, Fu Q, Hauer-Jensen M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J Gastroenterol. 2007;13:3047–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Haydont V, Riser BL, Aigueperse J, Vozenin-Brotons MC. Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-beta1. Am J Physiol Cell Physiol. 2008;294:C1332–41.

    Article  CAS  PubMed  Google Scholar 

  44. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3:349–63.

    Article  CAS  PubMed  Google Scholar 

  45. Guyot C, Lepreux S, Combe C, Doudnikoff E, Bioulac-Sage P, Balabaud C, Desmouliere A. Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol. 2006;38:135–51.

    CAS  PubMed  Google Scholar 

  46. Epperly MW, Guo H, Gretton JE, Greenberger JS. Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am J Respir Cell Mol Biol. 2003;29:213–24.

    Article  CAS  PubMed  Google Scholar 

  47. Perl AK, Gale E. FGF signaling is required for myofibroblast differentiation during alveolar regeneration. Am J Physiol Lung Cell Mol Physiol. 2009;297:L299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gallucci RM, Lee EG, Tomasek JJ. Il-6 modulates alpha-smooth muscle actin expression in dermal fibroblasts from il-6-deficient mice. J Invest Dermatol. 2006;126:561–8.

    Article  CAS  PubMed  Google Scholar 

  49. Winczura P, Jassem J. Combined treatment with cytoprotective agents and radiotherapy. Cancer Treat Rev. 2010;36:268–75.

    Article  CAS  PubMed  Google Scholar 

  50. Booth D, Potten CS. Protection against mucosal injury by growth factors and cytokines. J Natl Cancer Inst Monogr. 2001:16–20.

    Google Scholar 

  51. Dorr W, Spekl K, Farrell CL. Amelioration of acute oral mucositis by keratinocyte growth factor: fractionated irradiation. Int J Radiat Oncol Biol Phys. 2002;54:245–51.

    Article  CAS  PubMed  Google Scholar 

  52. Dorr W, Heider K, Spekl K. Reduction of oral mucositis by palifermin (rhukgf): dose-effect of rhukgf. Int J Radiat Biol. 2005;81:557–65.

    Article  PubMed  CAS  Google Scholar 

  53. Pena LA, Fuks Z, Kolesnick RN. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 2000;60:321–7.

    CAS  PubMed  Google Scholar 

  54. Mangoni M, Vozenin MC, Biti G, Deutsch E. Normal tissues toxicities triggered by combined anti-angiogenic and radiation therapies: hurdles might be ahead. Br J Cancer. 2012;107:308–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rotolo J, Stancevic B, Zhang J, Hua G, Fuller J, Yin X, Haimovitz-Friedman A, Kim K, Qian M, Cardo-Vila M, Fuks Z, Pasqualini R, Arap W, Kolesnick R. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest. 2012;122:1786–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burdelya LG, Gleiberman AS, Toshkov I, Aygun-Sunar S, Bapardekar M, Manderscheid-Kern P, Bellnier D, Krivokrysenko VI, Feinstein E, Gudkov AV. Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83:228–34.

    Article  CAS  PubMed  Google Scholar 

  57. Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, Kurnasov OV, Fort FL, Osterman AL, Didonato JA, Feinstein E, Gudkov AV. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 2008;320:226–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, Degraff WG, Tsokos M, Wink DA, Isenberg JS, Roberts DD. Radioprotection in normal tissue and delayed tumor growth by blockade of cd47 signaling. Sci Trans Med. 2009;1:3ra7.

    Article  CAS  Google Scholar 

  59. Potten CS. Radiation, the ideal cytotoxic agent for studying the cell biology of tissues such as the small intestine. Radiat Res. 2004;161:123–36.

    Article  CAS  PubMed  Google Scholar 

  60. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293:293–7.

    Article  CAS  PubMed  Google Scholar 

  61. Vozenin-Brotons MC, Sivan V, Gault N, Renard C, Geffrotin C, Delanian S, Lefaix JL, Martin M. Antifibrotic action of cu/zn sod is mediated by TGF-beta1 repression and phenotypic reversion of myofibroblasts. Free Radic Biol Med. 2001;30:30–42.

    Article  CAS  PubMed  Google Scholar 

  62. Epperly M, Bray J, Kraeger S, Zwacka R, Engelhardt J, Travis E, Greenberger J. Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy. Gene Ther. 1998;5:196–208.

    Article  CAS  PubMed  Google Scholar 

  63. Niu Y, Epperly MW, Shen H, Smith T, Wang H, Greenberger JS. Intraesophageal mnsod-plasmid liposome enhances engraftment and self-renewal of bone marrow derived progenitors of esophageal squamous epithelium. Gene Ther. 2007;15(5):347–56.

    Article  PubMed  CAS  Google Scholar 

  64. Lefaix JL, Delanian S, Leplat JJ, Tricaud Y, Martin M, Nimrod A, Baillet F, Daburon F. Successful treatment of radiation-induced fibrosis using cu/zn-sod and mn-sod: an experimental study. Int J Radiat Oncol Biol Phys. 1996;35:305–12.

    Article  CAS  PubMed  Google Scholar 

  65. Delanian S, Lefaix JL. Current management for late normal tissue injury: radiation-induced fibrosis and necrosis. Semin Radiat Oncol. 2007;17:99–107.

    Article  PubMed  Google Scholar 

  66. Delanian S, Balla-Mekias S, Lefaix JL. Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17:3283–90.

    CAS  Google Scholar 

  67. Hamama S, Gilbert-Sirieix M, Vozenin MC, Delanian S. Radiation-induced enteropathy: molecular basis of pentoxifylline-vitamin E anti-fibrotic effect involved TGF-beta1 cascade inhibition. Radiother Oncol. 2012;105:305–12.

    Article  CAS  PubMed  Google Scholar 

  68. Berbee M, Fu Q, Garg S, Kulkarni S, Kumar KS, Hauer-Jensen M. Pentoxifylline enhances the radioprotective properties of gamma-tocotrienol: differential effects on the hematopoietic, gastrointestinal and vascular systems. Radiat Res. 2011;175:297–306.

    Article  CAS  PubMed  Google Scholar 

  69. Berbee M, Fu Q, Boerma M, Sree Kumar K, Loose DS, Hauer-Jensen M. Mechanisms underlying the radioprotective properties of gamma-tocotrienol: comparative gene expression profiling in tocol-treated endothelial cells. Genes Nutr. 2012;7:75–81.

    Article  CAS  PubMed  Google Scholar 

  70. Sridharan V, Tripathi P, Sharma S, Corry PM, Moros EG, Singh A, Compadre CM, Hauer-Jensen M, Boerma M. Effects of late administration of pentoxifylline and tocotrienols in an image-guided rat model of localized heart irradiation. PLoS One. 2013;8, e68762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Williams JP, Hernady E, Johnston CJ, Reed CM, Fenton B, Okunieff P, Finkelstein JN. Effect of administration of lovastatin on the development of late pulmonary effects after whole-lung irradiation in a murine model. Radiat Res. 2004;161:560–7.

    Article  CAS  PubMed  Google Scholar 

  72. Haydont V, Bourgier C, Pocard M, Lusinchi A, Aigueperse J, Mathe D, Bourhis J, Vozenin-Brotons MC. Pravastatin inhibits the rho/ccn2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clin Cancer Res. 2007;13:5331–40.

    Article  CAS  PubMed  Google Scholar 

  73. Haydont V, Gilliot O, Rivera S, Bourgier C, Francois A, Aigueperse J, Bourhis J, Vozenin-Brotons MC. Successful mitigation of delayed intestinal radiation injury using pravastatin is not associated with acute injury improvement or tumor protection. Int J Radiat Oncol Biol Phys. 2007;68:1471–82.

    Article  CAS  PubMed  Google Scholar 

  74. Wang J, Boerma M, Fu Q, Kulkarni A, Fink LM, Hauer-Jensen M. Simvastatin ameliorates radiation enteropathy development after localized, fractionated irradiation by a protein c-independent mechanism. Int J Radiat Oncol Biol Phys. 2007;68:1483–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Holler V, Buard V, Gaugler MH, Guipaud O, Baudelin C, Sache A, Perez Mdel R, Squiban C, Tamarat R, Milliat F, Benderitter M. Pravastatin limits radiation-induced vascular dysfunction in the skin. J Invest Dermatol. 2009;129:1280–91.

    Article  CAS  PubMed  Google Scholar 

  76. Wang J, Zheng H, Ou X, Albertson CM, Fink LM, Herbert JM, Hauer-Jensen M. Hirudin ameliorates intestinal radiation toxicity in the rat: support for thrombin inhibition as strategy to minimize side-effects after radiation therapy and as countermeasure against radiation exposure. J Thromb Haemost. 2004;2:2027–35.

    Article  CAS  PubMed  Google Scholar 

  77. Wang J, Zheng H, Hauer-Jensen M. Influence of short-term octreotide administration on chronic tissue injury, transforming growth factor beta (TGF-beta) overexpression, and collagen accumulation in irradiated rat intestine. J Pharmacol Exp Ther. 2001;297:35–42.

    CAS  PubMed  Google Scholar 

  78. Wang J, Zheng H, Sung CC, Hauer-Jensen M. The synthetic somatostatin analogue, octreotide, ameliorates acute and delayed intestinal radiation injury. Int J Radiat Oncol Biol Phys. 1999;45:1289–96.

    Article  CAS  PubMed  Google Scholar 

  79. Hauer-Jensen M, Fink LM, Wang J. Radiation injury and the protein C pathway. Crit Care Med. 2004;32:S325–30.

    Article  CAS  PubMed  Google Scholar 

  80. Geiger H, Pawar SA, Kerschen EJ, Nattamai KJ, Hernandez I, Liang HP, Fernandez JA, Cancelas JA, Ryan MA, Kustikova O, Schambach A, Fu Q, Wang J, Fink LM, Petersen KU, Zhou D, Griffin JH, Baum C, Weiler H, Hauer-Jensen M. Pharmacological targeting of the thrombomodulin-activated protein c pathway mitigates radiation toxicity. Nat Med. 2012;18:1123–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11:239–53.

    Article  CAS  PubMed  Google Scholar 

  82. Moding EJ, Kastan MB, Kirsch DG. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov. 2013;12:526–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Du S, Barcellos-Hoff MH. Tumors as organs: biologically augmenting radiation therapy by inhibiting transforming growth factor beta activity in carcinomas. Semin Radiat Oncol. 2013;23:242–51.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Barcellos-Hoff MH, Cucinotta FA. New tricks for an old fox: impact of TGFbeta on the DNA damage response and genomic stability. Sci Signal. 2014;7:re5.

    Article  PubMed  CAS  Google Scholar 

  85. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15:409–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Derynck R, Feng XH. TGF-beta receptor signaling. Biochim Biophys Acta. 1997;1333:F105–50.

    CAS  PubMed  Google Scholar 

  87. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  88. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a rhoa-dependent mechanism. Mol Biol Cell. 2001;12:27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Suzuki K, Wilkes MC, Garamszegi N, Edens M, Leof EB. Transforming growth factor beta signaling via ras in mesenchymal cells requires p21-activated kinase 2 for extracellular signal-regulated kinase-dependent transcriptional responses. Cancer Res. 2007;67:3673–82.

    Article  CAS  PubMed  Google Scholar 

  90. Kim MR, Lee J, An YS, Jin YB, Park IC, Chung E, Shin I, Barcellos-Hoff MH, Yi JY. TGFbeta1 protects cells from gamma-ir by enhancing the activity of the NHEJ repair pathway. Mol Cancer Res. 2015;13:319–29.

    Article  CAS  PubMed  Google Scholar 

  91. Davis BN, Hilyard AC, Lagna G, Hata A. Smad proteins control drosha-mediated microrna maturation. Nature. 2008;454:56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Peng Y, Song L, Zhao M, Harmelink C, Debenedittis P, Cui X, Wang Q, Jiao K. Critical roles of mirna-mediated regulation of TGFbeta signalling during mouse cardiogenesis. Cardiovasc Res. 2014;103:258–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Garcia R, Nistal JF, Merino D, Price NL, Fernandez-Hernando C, Beaumont J, Gonzalez A, Hurle MA, Villar AV. P-smad2/3 and dicer promote pre-mir-21 processing during pressure overload-associated myocardial remodeling. Biochim Biophys Acta. 1852;2015:1520–30.

    Google Scholar 

  94. Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, Feng S, Xie L, Lu C, Yuan Y, Zhang Y, Wang Y, Lu Y, Yang B. Microrna-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation. 2012;126:840–50.

    Article  CAS  PubMed  Google Scholar 

  95. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. Microrna-21 contributes to myocardial disease by stimulating map kinase signalling in fibroblasts. Nature. 2008;456:980–4.

    Article  CAS  PubMed  Google Scholar 

  96. Hamama S, Noman MZ, Gervaz P, Delanian S, Vozenin MC. Mir-210: a potential therapeutic target against radiation-induced enteropathy. Radiother Oncol. 2014;111:219–21.

    Article  CAS  PubMed  Google Scholar 

  97. Anscher MS, Thrasher B, Rabbani Z, Teicher B, Vujaskovic Z. Antitransforming growth factor-beta antibody 1d11 ameliorates normal tissue damage caused by high-dose radiation. Int J Radiat Oncol Biol Phys. 2006;65:876–81.

    Article  CAS  PubMed  Google Scholar 

  98. Anscher MS, Thrasher B, Zgonjanin L, Rabbani ZN, Corbley MJ, Fu K, Sun L, Lee WC, Ling LE, Vujaskovic Z. Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 2008;71:829–37.

    Article  CAS  PubMed  Google Scholar 

  99. Zheng H, Wang J, Koteliansky VE, Gotwals PJ, Hauer-Jensen M. Recombinant soluble transforming growth factor beta type II receptor ameliorates radiation enteropathy in mice. Gastroenterology. 2000;119:1286–96.

    Article  CAS  PubMed  Google Scholar 

  100. Rabbani ZN, Anscher MS, Zhang X, Chen L, Samulski TV, Li CY, Vujaskovic Z. Soluble TGFbeta type II receptor gene therapy ameliorates acute radiation-induced pulmonary injury in rats. Int J Radiat Oncol Biol Phys. 2003;57:563–72.

    Article  CAS  PubMed  Google Scholar 

  101. Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, King Jr TE, Lancaster L, Sahn SA, Szwarcberg J, Valeyre D, du Bois RM. Pirfenidone in patients with idiopathic pulmonary fibrosis (capacity): two randomised trials. Lancet. 2011;377:1760–9.

    Article  CAS  PubMed  Google Scholar 

  102. Simone NL, Soule BP, Gerber L, Augustine E, Smith S, Altemus RM, Mitchell JB, Camphausen KA. Oral pirfenidone in patients with chronic fibrosis resulting from radiotherapy: a pilot study. Radiat Oncol. 2007;2:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol. 2001;11:471–7.

    Article  CAS  PubMed  Google Scholar 

  104. Vozenin-Brotons MC, Milliat F, Linard C, Strup C, Francois A, Sabourin JC, Lasser P, Lusinchi A, Deutsch E, Girinsky T, Aigueperse J, Bourhis J, Mathe D. Gene expression profile in human late radiation enteritis obtained by high-density cdna array hybridization. Radiat Res. 2004;161:299–311.

    Article  CAS  PubMed  Google Scholar 

  105. Haydont V, Mathe D, Bourgier C, Abdelali J, Aigueperse J, Bourhis J, Vozenin-Brotons MC. Induction of cTGF by TGF-beta1 in normal and radiation enteritis human smooth muscle cells: Smad/rho balance and therapeutic perspectives. Radiother Oncol. 2005;76:219–25.

    Article  CAS  PubMed  Google Scholar 

  106. Monceau V, Pasinetti N, Schupp C, Pouzoulet F, Opolon P, Vozenin MC. Modulation of the rho/rock pathway in heart and lung after thorax irradiation reveals targets to improve normal tissue toxicity. Curr Drug Targets. 2010;11:1395–404.

    Article  CAS  PubMed  Google Scholar 

  107. Monceau V, Llach A, Azria D, Bridier A, Petit B, Mazevet M, Strup-Perrot C, To TH, Calmels L, Germaini MM, Gourgou S, Fenoglietto P, Bourgier C, Gomez AM, Escoubet B, Dorr W, Haagen J, Deutsch E, Morel E, Vozenin MC. Epac contributes to cardiac hypertrophy and amyloidosis induced by radiotherapy but not fibrosis. Radiother Oncol. 2014;111:63–71.

    Article  PubMed  Google Scholar 

  108. Bourgier C, Monceau V, Bourhis J, Deutsch E, Vozenin MC. [Pharmacological modulation of late radio-induced side effects]. Cancer Radiother. 2011;15:383–9.

    Article  CAS  PubMed  Google Scholar 

  109. Bourgier C, Haydont V, Milliat F, Francois A, Holler V, Lasser P, Bourhis J, Mathe D, Vozenin-Brotons MC. Inhibition of rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression. Gut. 2005;54:336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Haydont V, Bourgier C, Vozenin-Brotons MC. Rho/rock pathway as a molecular target for modulation of intestinal radiation-induced toxicity. Br J Radiol. 2007;80(Spec No 1):S32–40.

    Article  CAS  PubMed  Google Scholar 

  111. Ostrau C, Hulsenbeck J, Herzog M, Schad A, Torzewski M, Lackner KJ, Fritz G. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother Oncol. 2009;92:492–9.

    Article  CAS  PubMed  Google Scholar 

  112. Boerma M, Fu Q, Wang J, Loose DS, Bartolozzi A, Ellis JL, McGonigle S, Paradise E, Sweetnam P, Fink LM, Vozenin-Brotons MC, Hauer-Jensen M. Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of rho kinase or atorvastatin. Blood Coagul Fibrinolysis. 2008;19:709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Katz MS, Minsky BD, Saltz LB, Riedel E, Chessin DB, Guillem JG. Association of statin use with a pathologic complete response to neoadjuvant chemoradiation for rectal cancer. Int J Radiat Oncol Biol Phys. 2005;62:1363–70.

    Article  CAS  PubMed  Google Scholar 

  114. Wedlake LJ, Silia F, Benton B, Lalji A, Thomas K, Dearnaley DP, Blake P, Tait D, Khoo VS, Andreyev HJ. Evaluating the efficacy of statins and ace-inhibitors in reducing gastrointestinal toxicity in patients receiving radiotherapy for pelvic malignancies. Eur J Cancer. 2012;48:2117–24.

    Article  CAS  PubMed  Google Scholar 

  115. Brigstock DR, Steffen CL, Kim GY, Vegunta RK, Diehl JR, Harding PA. Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated mr 10,000 forms of connective tissue growth factor. J Biol Chem. 1997;272:20275–82.

    Article  CAS  PubMed  Google Scholar 

  116. Shi-wen X, Pennington D, Holmes A, Leask A, Bradham D, Beauchamp JR, Fonseca C, du Bois RM, Martin GR, Black CM, Abraham DJ. Autocrine overexpression of cTGF maintains fibrosis: Rda analysis of fibrosis genes in systemic sclerosis. Exp Cell Res. 2000;259:213–24.

    Article  CAS  PubMed  Google Scholar 

  117. Holmes A, Abraham DJ, Sa S, Shiwen X, Black CM, Leask A. CTGF and smads, maintenance of scleroderma phenotype is independent of smad signaling. J Biol Chem. 2001;276:10594–601.

    Article  CAS  PubMed  Google Scholar 

  118. Grotendorst GR, Okochi H, Hayashi N. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ. 1996;7:469–80.

    CAS  PubMed  Google Scholar 

  119. Flanders KC, Major CD, Arabshahi A, Aburime EE, Okada MH, Fujii M, Blalock TD, Schultz GS, Sowers A, Anzano MA, Mitchell JB, Russo A, Roberts AB. Interference with transforming growth factor-beta/smad3 signaling results in accelerated healing of wounds in previously irradiated skin. Am J Pathol. 2003;163:2247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xue J, Li X, Lu Y, Gan L, Zhou L, Wang Y, Lan J, Liu S, Sun L, Jia L, Mo X, Li J. Gene-modified mesenchymal stem cells protect against radiation-induced lung injury. Mol Ther. 2013;21:456–65.

    Article  CAS  PubMed  Google Scholar 

  121. Vozenin-Brotons MC, Milliat F, Sabourin JC, de Gouville AC, Francois A, Lasser P, Morice P, Haie-Meder C, Lusinchi A, Antoun S, Bourhis J, Mathe D, Girinsky T, Aigueperse J. Fibrogenic signals in patients with radiation enteritis are associated with increased connective tissue growth factor expression. Int J Radiat Oncol Biol Phys. 2003;56:561–72.

    Article  CAS  PubMed  Google Scholar 

  122. Haydont V, Vozenin-Brotons MC. Maintenance of radiation-induced intestinal fibrosis: cellular and molecular features. World J Gastroenterol. 2007;13:2675–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang P, Cui W, Hankey KG, Gibbs AM, Smith CP, Taylor-Howell C, Kearney SR, MacVittie TJ. Increased expression of connective tissue growth factor (cTGF) in multiple organs after exposure of non-human primates (nhp) to lethal doses of radiation. Health Phys. 2015;109:374–90.

    Article  CAS  PubMed  Google Scholar 

  124. Chen CC, Chen N, Lau LF. The angiogenic factors cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem. 2001;276:10443–52.

    Article  CAS  PubMed  Google Scholar 

  125. Segarini PR, Nesbitt JE, Li D, Hays LG, Yates 3rd JR, Carmichael DF. The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor. J Biol Chem. 2001;276:40659–67.

    Article  CAS  PubMed  Google Scholar 

  126. Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997;8:171–9.

    Article  CAS  PubMed  Google Scholar 

  127. Xue J, Gan L, Li X, Li J, Qi G, Wu Y, Fu X, Mao Q, Ao R, Lang J, Lu Y. Effects of lysophosphatidic acid and its receptors lpa(1/3) on radiation pneumonitis. Oncol Rep. 2010;24:1515–20.

    Article  CAS  PubMed  Google Scholar 

  128. Bickelhaupt S, Peschke P, Erbel C, Tietz A, Timke C, Wirkner U, Debus J, Lipson K, Huber PE. Attenuation and reversal of radiation-induced pulmonary fibrosis in a murine model by an anti-cTGF monoclonal antibody. Int J Radiat Oncol. 2010;78:abstract number 84.

    Article  Google Scholar 

  129. Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Grone HJ, Lipson KE, Huber PE. Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med. 2005;201:925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tayel A, Abd El Galil KH, Ebrahim MA, Ibrahim AS, El-Gayar AM, Al-Gayyar MM. Suramin inhibits hepatic tissue damage in hepatocellular carcinoma through deactivation of heparanase enzyme. Eur J Pharmacol. 2014;728:151–60.

    Article  CAS  PubMed  Google Scholar 

  131. McGeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP. Suramin: clinical uses and structure-activity relationships. Mini Rev Med Chem. 2008;8:1384–94.

    Article  CAS  PubMed  Google Scholar 

  132. Vujaskovic Z, Anscher MS, Feng QF, Rabbani ZN, Amin K, Samulski TS, Dewhirst MW, Haroon ZA. Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys. 2001;50:851–5.

    Article  CAS  PubMed  Google Scholar 

  133. Pasquier D, Hoelscher T, Schmutz J, Dische S, Mathieu D, Baumann M, Lartigau E. Hyperbaric oxygen therapy in the treatment of radio-induced lesions in normal tissues: a literature review. Radiother Oncol. 2004;72:1–13.

    Article  CAS  PubMed  Google Scholar 

  134. Benhyahia BCF, Perdereau B, Gez E, Fourquet A, Magdelena H. Effects of sod topical treatment on human skin radiofibrosis: a pathological study. Breast. 1996;5:75–81.

    Article  Google Scholar 

  135. Liu R, Oberley TD, Oberley LW. Transfection and expression of mnsod cdna decreases tumor malignancy of human oral squamous carcinoma scc-25 cells. Hum Gene Ther. 1997;8:585–95.

    Article  CAS  PubMed  Google Scholar 

  136. Dennog C, Radermacher P, Barnett YA, Speit G. Antioxidant status in humans after exposure to hyperbaric oxygen. Mutat Res. 1999;428:83–9.

    Article  CAS  PubMed  Google Scholar 

  137. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  138. Vujaskovic Z, Feng QF, Rabbani ZN, Anscher MS, Samulski TV, Brizel DM. Radioprotection of lungs by amifostine is associated with reduction in profibrogenic cytokine activity. Radiat Res. 2002;157:656–60.

    Article  CAS  PubMed  Google Scholar 

  139. Fleischer G, Dorr W. Amelioration of early radiation effects in oral mucosa (mouse) by intravenous or subcutaneous administration of amifostine. Strahlenther Onkol. 2006;182:567–75.

    Article  PubMed  Google Scholar 

  140. Koukourakis MI, Tsoutsou PG, Abatzoglou IM, Sismanidou K, Giatromanolaki A, Sivridis E. Hypofractionated and accelerated radiotherapy with subcutaneous amifostine cytoprotection as short adjuvant regimen after breast-conserving surgery: interim report. Int J Radiat Oncol Biol Phys. 2009;74:1173–80.

    Article  CAS  PubMed  Google Scholar 

  141. Boerma M, Roberto KA, Hauer-Jensen M. Prevention and treatment of functional and structural radiation injury in the rat heart by pentoxifylline and alpha-tocopherol. Int J Radiat Oncol Biol Phys. 2008;72:170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Berbee M, Fu Q, Boerma M, Wang J, Kumar KS, Hauer-Jensen M. Gamma-tocotrienol ameliorates intestinal radiation injury and reduces vascular oxidative stress after total-body irradiation by an hmg-coa reductase-dependent mechanism. Radiat Res. 2009;171:596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Berbee M, Fu Q, Boerma M, Pathak R, Zhou D, Kumar KS, Hauer-Jensen M. Reduction of radiation-induced vascular nitrosative stress by the vitamin E analog gamma-tocotrienol: evidence of a role for tetrahydrobiopterin. Int J Radiat Oncol Biol Phys. 2011;79:884–91.

    Article  CAS  PubMed  Google Scholar 

  144. Choi SH, Hong ZY, Nam JK, Lee HJ, Jang J, Yoo RJ, Lee YJ, Lee CY, Kim KH, Park S, Ji YH, Lee YS, Cho J, Lee YJ. A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clin Cancer Res. 2015;21:3716–26.

    Article  CAS  PubMed  Google Scholar 

  145. Wynn TA. Fibrotic disease and the t(h)1/t(h)2 paradigm. Nat Rev Immunol. 2004;4:583–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208:1339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hirota K, Hashimoto H, Tsubo T, Ishihara H, Matsuki A. Quantification and comparison of pulmonary emboli formation after pneumatic tourniquet release in patients undergoing reconstruction of anterior cruciate ligament and total knee arthroplasty. Anesth Analg. 2002;94:1633–8.

    PubMed  Google Scholar 

  148. Evans ML, Graham MM, Mahler PA, Rasey JS. Use of steroids to suppress vascular response to radiation. Int J Radiat Oncol Biol Phys. 1987;13:563–7.

    Article  CAS  PubMed  Google Scholar 

  149. Ward HE, Kemsley L, Davies L, Holecek M, Berend N. The effect of steroids on radiation-induced lung disease in the rat. Radiat Res. 1993;136:22–8.

    Article  CAS  PubMed  Google Scholar 

  150. Hill RP, Zaidi A, Mahmood J, Jelveh S. Investigations into the role of inflammation in normal tissue response to irradiation. Radiother Oncol. 2011;101:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nawroth I, Alsner J, Behlke MA, Besenbacher F, Overgaard J, Howard KA, Kjems J. Intraperitoneal administration of chitosan/dsirna nanoparticles targeting tnfalpha prevents radiation-induced fibrosis. Radiother Oncol. 2010;97:143–8.

    Article  CAS  PubMed  Google Scholar 

  152. Xia DH, Xi L, Xv C, Mao WD, Shen WS, Shu ZQ, Yang HZ, Dai M. The protective effects of ambroxol on radiation lung injury and influence on production of transforming growth factor beta1 and tumor necrosis factor alpha. Med Oncol. 2010;27:697–701.

    Article  CAS  PubMed  Google Scholar 

  153. Delanian S, Lefaix JL. Complete healing of severe osteoradionecrosis with treatment combining pentoxifylline, tocopherol and clodronate. Br J Radiol. 2002;75:467–9.

    Article  CAS  PubMed  Google Scholar 

  154. Fleischmann RM, Schechtman J, Bennett R, Handel ML, Burmester GR, Tesser J, Modafferi D, Poulakos J, Sun G. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-methuil-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheum. 2003;48:927–34.

    Article  CAS  PubMed  Google Scholar 

  155. Piguet PF, Vesin C, Grau GE, Thompson RC. Interleukin 1 receptor antagonist (il-1ra) prevents or cures pulmonary fibrosis elicited in mice by bleomycin or silica. Cytokine. 1993;5:57–61.

    Article  CAS  PubMed  Google Scholar 

  156. Zurawski SM, Vega Jr F, Huyghe B, Zurawski G. Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J. 1993;12:2663–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ong C, Wong C, Roberts CR, Teh HS, Jirik FR. Anti-il-4 treatment prevents dermal collagen deposition in the tight-skin mouse model of scleroderma. Eur J Immunol. 1998;28:2619–29.

    Article  CAS  PubMed  Google Scholar 

  158. Cheever AW, Williams ME, Wynn TA, Finkelman FD, Seder RA, Cox TM, Hieny S, Caspar P, Sher A. Anti-il-4 treatment of schistosoma mansoni-infected mice inhibits development of t cells and non-b, non-t cells expressing th2 cytokines while decreasing egg-induced hepatic fibrosis. J Immunol. 1994;153:753–9.

    CAS  PubMed  Google Scholar 

  159. Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA. An il-13 inhibitor blocks the development of hepatic fibrosis during a t-helper type 2-dominated inflammatory response. J Clin Invest. 1999;104:777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kumar RK, Herbert C, Yang M, Koskinen AM, McKenzie AN, Foster PS. Role of interleukin-13 in eosinophil accumulation and airway remodelling in a mouse model of chronic asthma. Clin Exp Allergy. 2002;32:1104–11.

    Article  CAS  PubMed  Google Scholar 

  161. Smith RE. Chemotactic cytokines mediate leukocyte recruitment in fibrotic lung disease. Biol Signals. 1996;5:223–31.

    Article  CAS  PubMed  Google Scholar 

  162. Smith RE, Strieter RM, Phan SH, Kunkel SL. C-c chemokines: novel mediators of the profibrotic inflammatory response to bleomycin challenge. Am J Respir Cell Mol Biol. 1996;15:693–702.

    Article  CAS  PubMed  Google Scholar 

  163. Belperio JA, Dy M, Murray L, Burdick MD, Xue YY, Strieter RM, Keane MP. The role of the th2 cc chemokine ligand ccl17 in pulmonary fibrosis. J Immunol. 2004;173:4692–8.

    Article  CAS  PubMed  Google Scholar 

  164. Jiang D, Liang J, Campanella GS, Guo R, Yu S, Xie T, Liu N, Jung Y, Homer R, Meltzer EB, Li Y, Tager AM, Goetinck PF, Luster AD, Noble PW. Inhibition of pulmonary fibrosis in mice by cxcl10 requires glycosaminoglycan binding and syndecan-4. J Clin Invest. 2010;120:2049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Burdick MD, Murray LA, Keane MP, Xue YY, Zisman DA, Belperio JA, Strieter RM. Cxcl11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med. 2005;171:261–8.

    Article  PubMed  Google Scholar 

  166. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Estes JD, Wietgrefe S, Schacker T, Southern P, Beilman G, Reilly C, Milush JM, Lifson JD, Sodora DL, Carlis JV, Haase AT. Simian immunodeficiency virus-induced lymphatic tissue fibrosis is mediated by transforming growth factor β1-positive regulatory t cells and begins in early infection. J Infect Dis. 2007;195(4):551–61.

    Article  CAS  PubMed  Google Scholar 

  168. Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int. 2006;26:8–22.

    Article  PubMed  Google Scholar 

  169. Wilson IA, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, Wynn TA. Bleomycin and il-1β–mediated pulmonary fibrosis is il-17a dependent. J Exp Med. 2010;207(3):535–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gasse P, Riteau N, Vacher R, Michel ML, Fautrel A, di Padova F, Fick L, Charron S, Lagente V, Eberl G, Le Bert M, Quesniaux VF, Huaux F, Leite-de-Moraes M, Ryffel B, Couillin I. Il-1 and il-23 mediate early il-17a production in pulmonary inflammation leading to late fibrosis. PLoS One. 2011;6, e23185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cortez DM, Feldman MD, Mummidi S, Valente AJ, Steffensen B, Vincenti M, Barnes JL, Chandrasekar B. Il-17 stimulates mmp-1 expression in primary human cardiac fibroblasts via p38 mapk- and erk1/2-dependent c/ebp-beta, nf-kappab, and ap-1 activation. Am J Physiol Heart Circ Physiol. 2007;293:H3356–65.

    Article  CAS  PubMed  Google Scholar 

  172. Cao H, Zhou X, Zhang J, Huang X, Zhai Y, Zhang X, Chu L. Hydrogen sulfide protects against bleomycin-induced pulmonary fibrosis in rats by inhibiting nf-kappab expression and regulating th1/th2 balance. Toxicol Lett. 2014;224:387–94.

    Article  CAS  PubMed  Google Scholar 

  173. Zheng X, Guo Y, Wang L, Zhang H, Wang S, Wang L, An L, Zhou X, Li X, Yao C. Recovery profiles of t-cell subsets following low-dose total body irradiation and improvement with cinnamon. Int J Radiat Oncol Biol Phys. 2015;93:1118–26.

    Article  CAS  PubMed  Google Scholar 

  174. De Palma M, Coukos G, Hanahan D. A new twist on radiation oncology: low-dose irradiation elicits immunostimulatory macrophages that unlock barriers to tumor immunotherapy. Cancer Cell. 2013;24:559–61.

    Article  PubMed  CAS  Google Scholar 

  175. Groves AM, Johnston CJ, Misra RS, Williams JP, Finkelstein JN. Whole-lung irradiation results in pulmonary macrophage alterations that are subpopulation and strain specific. Radiat Res. 2015;184:639–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  CAS  PubMed  Google Scholar 

  177. Morris Jr SM, Kepka-Lenhart D, Chen LC. Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. Am J Physiol. 1998;275:E740–7.

    PubMed  Google Scholar 

  178. Troidl C, Mollmann H, Nef H, Masseli F, Voss S, Szardien S, Willmer M, Rolf A, Rixe J, Troidl K, Kostin S, Hamm C, Elsasser A. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med. 2009;13:3485–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hu Y, Zhang H, Lu Y, Bai H, Xu Y, Zhu X, Zhou R, Ben J, Xu Y, Chen Q. Class a scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing m1 macrophage subset polarization. Basic Res Cardiol. 2011;106(6):1311–28.

    Article  CAS  PubMed  Google Scholar 

  180. Usher MG, Duan SZ, Ivaschenko CY, Frieler RA, Berger S, Schutz G, Lumeng CN, Mortensen RM. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest. 2010;120:3350–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Roberts Jr NJ, Prill AH, Mann TN. Interleukin 1 and interleukin 1 inhibitor production by human macrophages exposed to influenza virus or respiratory syncytial virus. Respiratory syncytial virus is a potent inducer of inhibitor activity. J Exp Med. 1986;163:511–9.

    Article  CAS  PubMed  Google Scholar 

  182. Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.

    Article  CAS  PubMed  Google Scholar 

  183. De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 2013;23:277–86.

    Article  PubMed  CAS  Google Scholar 

  184. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–9.

    Article  CAS  PubMed  Google Scholar 

  185. Burnette B, Weichselbaum RR. The immunology of ablative radiation. Semin Radiat Oncol. 2015;25:40–5.

    Article  PubMed  Google Scholar 

  186. Meng YR, Beckett MA, Liang H, Mauceri HJ, van Rooijen N, Cohen KS, Weichselbaum RR. Blockade of tumor necrosis factor alpha signaling in tumor-associated macrophages as a radiosensitizing strategy. Cancer Res. 2010;70:1534–43.

    Article  CAS  PubMed  Google Scholar 

  187. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, Klapproth K, Schakel K, Garbi N, Jager D, Weitz J, Schmitz-Winnenthal H, Hammerling GJ, Beckhove P. Low-dose irradiation programs macrophage differentiation to an inos(+)/m1 phenotype that orchestrates effective t cell immunotherapy. Cancer Cell. 2013;24:589–602.

    Article  CAS  PubMed  Google Scholar 

  188. Thepen T, Van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med. 1989;170:499–509.

    Article  CAS  PubMed  Google Scholar 

  189. Lu SW, Zhang XM, Luo HM, Fu YC, Xu MY, Tang SJ. Clodronate liposomes reduce excessive scar formation in a mouse model of burn injury by reducing collagen deposition and TGF-beta1 expression. Mol Biol Rep. 2014;41:2143–9.

    Article  CAS  PubMed  Google Scholar 

  190. Froom P, Elmalah I, Braester A, Aghai E, Quitt M. Clodronate in myelofibrosis: a case report. Am J Med Sci. 2002;323:115–6.

    Article  PubMed  Google Scholar 

  191. Delanian S, Lefaix JL, Maisonobe T, Salachas F, Pradat PF. Significant clinical improvement in radiation-induced lumbosacral polyradiculopathy by a treatment combining pentoxifylline, tocopherol, and clodronate (pentoclo). J Neurol Sci. 2008;275:164–6.

    Article  CAS  PubMed  Google Scholar 

  192. Hume DA, MacDonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (csf-1) and antagonists of csf-1 receptor (csf-1r) signaling. Blood. 2012;119:1810–20.

    Article  CAS  PubMed  Google Scholar 

  193. Murayama T, Yokode M, Kataoka H, Imabayashi T, Yoshida H, Sano H, Nishikawa S, Nishikawa S, Kita T. Intraperitoneal administration of anti-c-fms monoclonal antibody prevents initial events of atherogenesis but does not reduce the size of advanced lesions in apolipoprotein e-deficient mice. Circulation. 1999;99:1740–6.

    Article  CAS  PubMed  Google Scholar 

  194. Jose MD, Le Meur Y, Atkins RC, Chadban SJ. Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection. Am J Transplant. 2003;3:294–300.

    Article  CAS  PubMed  Google Scholar 

  195. Segawa M, Fukada S, Yamamoto Y, Yahagi H, Kanematsu M, Sato M, Ito T, Uezumi A, Hayashi S, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Yamamoto H. Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res. 2008;314:3232–44.

    Article  CAS  PubMed  Google Scholar 

  196. Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG, Humphreys BD, Wada T, Schwarting A, Stanley ER, Kelley VR. Csf-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest. 2009;119:2330–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Menke J, Kriegsmann J, Schimanski CC, Schwartz MM, Schwarting A, Kelley VR. Autocrine csf-1 and csf-1 receptor coexpression promotes renal cell carcinoma growth. Cancer Res. 2012;72:187–200.

    Article  CAS  PubMed  Google Scholar 

  198. Menke J, Rabacal WA, Byrne KT, Iwata Y, Schwartz MM, Stanley ER, Schwarting A, Kelley VR. Circulating csf-1 promotes monocyte and macrophage phenotypes that enhance lupus nephritis. J Am Soc Nephrol. 2009;20:2581–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Xu J, Escamilla J, Mok S, David J, Priceman SJ, West BL, Bollag G, McBride WH, Wu L. Abrogating the protumorigenic influences of tumor-infiltrating myeloid cells bycsf1r signaling blockade improves the efficacy of radiotherapy in prostatecancer. Cancer Res. 2013;73:2782–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Jones HA, Schofield JB, Krausz T, Boobis AR, Haslett C. Pulmonary fibrosis correlates with duration of tissue neutrophil activation. Am J Respir Crit Care Med. 1998;158:620–8.

    Article  CAS  PubMed  Google Scholar 

  201. Borthwick LA, Suwara MI, Carnell SC, Green NJ, Mahida R, Dixon D, Gillespie CS, Cartwright TN, Horabin J, Walker A, Olin E, Rangar M, Gardner A, Mann J, Corris PA, Mann DA, Fisher AJ. Pseudomonas aeruginosa induced airway epithelial injury drives fibroblast activation: a mechanism in chronic lung allograft dysfunction. Am J Transplant. 2016;16(6):1751–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Connolly MK, Bedrosian AS, Mallen-St Clair J, Mitchell AP, Ibrahim J, Stroud A, Pachter HL, Bar-Sagi D, Frey AB, Miller G. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via tnf-alpha. J Clin Invest. 2009;119:3213–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Greer AM, Matthay MA, Kukreja J, Bhakta NR, Nguyen CP, Wolters PJ, Woodruff PG, Fahy JV, Shin JS. Accumulation of bdca1(+) dendritic cells in interstitial fibrotic lung diseases and th2-high asthma. PLoS One. 2014;9, e99084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Nagai T, Honda S, Sugano Y, Matsuyama TA, Ohta-Ogo K, Asaumi Y, Ikeda Y, Kusano K, Ishihara M, Yasuda S, Ogawa H, Ishibashi-Ueda H, Anzai T. Decreased myocardial dendritic cells is associated with impaired reparative fibrosis and development of cardiac rupture after myocardial infarction in humans. J Am Heart Assoc. 2014;3, e000839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Levick SP, McLarty JL, Murray DB, Freeman RM, Carver WE, Brower GL. Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension. 2009;53:1041–7.

    Article  CAS  PubMed  Google Scholar 

  206. Reiman RM, Thompson RW, Feng CG, Hari D, Knight R, Cheever AW, Rosenberg HF, Wynn TA. Interleukin-5 (il-5) augments the progression of liver fibrosis by regulating il-13 activity. Infect Immun. 2006;74:1471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH, Gerard C. A critical role for eosinophils in allergic airways remodeling. Science. 2004;305:1776–9.

    Article  CAS  PubMed  Google Scholar 

  208. Levi-Schaffer F, Garbuzenko E, Rubin A, Reich R, Pickholz D, Gillery P, Emonard H, Nagler A, Maquart FA. Human eosinophils regulate human lung- and skin-derived fibroblast properties in vitro: a role for transforming growth factor beta (TGF-beta). Proc Natl Acad Sci U S A. 1999;96:9660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Taur Y, Pamer EG. The intestinal microbiota and susceptibility to infection in immunocompromised patients. Curr Opin Infect Dis. 2013;26:332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Logan AC, Katzman MA, Balanza-Martinez V. Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part II. J Physiol Anthropol. 2015;34:9.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Logan AC, Katzman MA, Balanza-Martinez V. Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part I. J Physiol Anthropol. 2015;34:1.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Smith P, Siddharth J, Pearson R, Holway N, Shaxted M, Butler M, Clark N, Jamontt J, Watson RP, Sanmugalingam D, Parkinson SJ. Host genetics and environmental factors regulate ecological succession of the mouse colon tissue-associated microbiota. PLoS One. 2012;7, e30273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Qiu W, Carson-Walter EB, Liu H, Epperly M, Greenberger JS, Zambetti GP, Zhang L, Yu J. Puma regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell. 2008;2:576–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang X, Wei L, Cramer JM, Leibowitz BJ, Judge C, Epperly M, Greenberger J, Wang F, Li L, Stelzner MG, Dunn JC, Martin MG, Lagasse E, Zhang L, Yu J. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Sci Rep. 2015;5:8566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Leibowitz BJ, Qiu W, Liu H, Cheng T, Zhang L, Yu J. Uncoupling p53 functions in radiation-induced intestinal damage via puma and p21. Mol Cancer Res. 2011;9:616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Rakoff-Nahoum S, Medzhitov R. Role of the innate immune system and host-commensal mutualism. Curr Top Microbiol Immunol. 2006;308:1–18.

    CAS  PubMed  Google Scholar 

  217. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Berard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson CO, Dore J, Kroemer G, Lepage P, Boneca IG, Ghiringhelli F, Zitvogel L. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342:971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M. Genomic analysis identifies association of fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, Datz C, Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V, Yarovinsky F, Cheroutre H, Eckmann L, Trinchieri G, Karin M. Adenoma-linked barrier defects and microbial products drive il-23/il-17-mediated tumour growth. Nature. 2012;491:254–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Farin HF, Van Es JH, Clevers H. Redundant sources of wnt regulate intestinal stem cells and promote formation of paneth cells. Gastroenterology. 2012;143:1518–29. e1517.

    Article  CAS  PubMed  Google Scholar 

  222. Ferreira MR, Andreyev HJ. Editorial: gut microbiota and chemotherapy- or radiation-induced gastrointestinal mucositis. Aliment Pharmacol Ther. 2014;40:733–4.

    Article  CAS  PubMed  Google Scholar 

  223. Ferreira MR, Muls A, Dearnaley DP, Andreyev HJ. Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist. Lancet Oncol. 2014;15:e139–47.

    Article  PubMed  Google Scholar 

  224. Wedlake L, Slack N, Andreyev HJ, Whelan K. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm Bowel Dis. 2014;20:576–86.

    Article  PubMed  Google Scholar 

  225. Eloe-Fadrosh EA, Brady A, Crabtree J, Drabek EF, Ma B, Mahurkar A, Ravel J, Haverkamp M, Fiorino AM, Botelho C, Andreyeva I, Hibberd PL, Fraser CM. Functional dynamics of the gut microbiome in elderly people during probiotic consumption. MBio 2015;6.

    Google Scholar 

  226. Hibberd PL, Kleimola L, Fiorino AM, Botelho C, Haverkamp M, Andreyeva I, Poutsiaka D, Fraser C, Solano-Aguilar G, Snydman DR. No evidence of harms of probiotic lactobacillus rhamnosus gg atcc 53103 in healthy elderly-a phase i open label study to assess safety, tolerability and cytokine responses. PLoS One. 2014;9, e113456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. De Ryck T, Vanlancker E, Grootaert C, Roman BI, De Coen LM, Vandenberghe I, Stevens CV, Bracke M, Van de Wiele T, Vanhoecke B. Microbial inhibition of oral epithelial wound recovery: potential role for quorum sensing molecules? AMB Express. 2015;5:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Vanhoecke B, De Ryck T, Stringer A, Van de Wiele T, Keefe D. Microbiota and their role in the pathogenesis of oral mucositis. Oral Dis. 2015;21:17–30.

    Article  CAS  PubMed  Google Scholar 

  229. Vanhoecke BW, De Ryck TR, De Boel K, Wiles S, Boterberg T, Van de Wiele T, Swift S. Low-dose irradiation affects the functional behavior of oral microbiota in the context of mucositis. Exp Biol Med. 2016;241:60–70.

    Article  CAS  Google Scholar 

  230. Andreyev J. Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. Lancet Oncol. 2007;8:1007–17.

    Article  PubMed  Google Scholar 

  231. Hauer-Jensen M, Denham JW, Andreyev HJ. Radiation enteropathy—pathogenesis, treatment and prevention. Nat Rev Gastroenterol Hepatol. 2014;11:470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Dandin O, Akin ML, Balta AZ, Yucel E, Karakas DO, Demirbas S, Ozdemir S, Haholu A. The efficacy of probiotic (lactobacillus rhamnosus gg) and 5-asa (aminosalicylic acid) in the treatment of experimental radiation proctitis in rats. Indian J Surg. 2015;77:563–9.

    Article  PubMed  Google Scholar 

  233. Ki Y, Kim W, Cho H, Ahn K, Choi Y, Kim D. The effect of probiotics for preventing radiation-induced morphological changes in intestinal mucosa of rats. J Korean Med Sci. 2014;29:1372–8.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Demers M, Dagnault A, Desjardins J. A randomized double-blind controlled trial: impact of probiotics on diarrhea in patients treated with pelvic radiation. Clin Nutr. 2014;33:761–7.

    Article  PubMed  Google Scholar 

  235. Chitapanarux I, Chitapanarux T, Traisathit P, Kudumpee S, Tharavichitkul E, Lorvidhaya V. Randomized controlled trial of live lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol. 2010;5:31.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Catherine Vozenin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Montay-Gruel, P., Boivin, G., Vozenin, MC. (2016). Novel Strategies to Prevent, Mitigate or Reverse Radiation Injury and Fibrosis. In: Anscher, M., Valerie, K. (eds) Strategies to Enhance the Therapeutic Ratio of Radiation as a Cancer Treatment. Springer, Cham. https://doi.org/10.1007/978-3-319-45594-5_4

Download citation

Publish with us

Policies and ethics