Skip to main content

Slow Cooling Cryopreservation Optimized to Human Pluripotent Stem Cells

  • Chapter
  • First Online:
Biobanking and Cryopreservation of Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 951))

Abstract

Human pluripotent stem cells (hPSCs) have the potential for unlimited expansion and differentiation into cells that form all three germ layers. Cryopreservation is one of the key processes for successful applications of hPSCs, because it allows semi-permanent preservation of cells and their easy transportation. Most animal cell lines, including mouse embryonic stem cells, are standardly cryopreserved by slow cooling; however, hPSCs have been difficult to preserve and their cell viability has been extremely low whenever cryopreservation has been attempted.

Here, we investigate the reasons for failure of slow cooling in hPSC cryopreservation. Cryopreservation involves a series of steps and is not a straightforward process. Cells may die due to various reasons during cryopreservation. Indeed, hPSCs preserved by traditional methods often suffer necrosis during the freeze-thawing stages, and the colony state of hPSCs prior to cryopreservation is a major factor contributing to cell death.

It has now become possible to cryopreserve hPSCs using conventional cryopreservation methods without any specific equipment. This review summarizes the advances in this area and discusses the optimization of slow cooling cryopreservation for hPSC storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

hPSC:

Human pluripotent stem cell

hESC:

Human embryonic stem cell

hiPSC:

Human induced pluripotent stem cell

DMSO:

Dimethyl sulfoxide

ROCK:

Rho-associated coiled-coil forming kinase

MEF:

Mouse embryonic fibroblast

EG:

Ethylene glycol

KSR:

Knockout serum replacement

FCS:

Fetal calf serum

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  3. Serra M, Brito C, Correia C, Alves PM (2012) Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30(6):350–359

    Article  CAS  PubMed  Google Scholar 

  4. Baust JG, Gao D, Baust JM (2009) Cryopreservation: an emerging paradigm change. Organogenesis 5(3):90–96

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 38(2):107–123

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wagh V, Meganathan K, Jagtap S, Gaspar JA, Winkler J, Spitkovsky D, Hescheler J, Sachinidis A (2011) Effects of cryopreservation on the transcriptome of human embryonic stem cells after thawing and culturing. Stem Cell Rev 7(3):506–517

    Article  PubMed  Google Scholar 

  7. Ha SY, Jee BC, Suh CS, Kim HS, Oh SK, Kim SH, Moon SY (2005) Cryopreservation of human embryonic stem cells without the use of a programmable freezer. Hum Reprod 20(7):1779–1785

    Article  CAS  PubMed  Google Scholar 

  8. Katkov II, Kan NG, Cimadamore F, Nelson B, Snyder EY, Terskikh AV (2011) DMSO-free programmed cryopreservation of fully dissociated and adherent human induced pluripotent stem cells. Stem Cells Int 2011:981606

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen G, Hou Z, Gulbranson DR, Thomson JA (2010) Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell 7(2):240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li L, Wang BH, Wang S, Moalim-Nour L, Mohib K, Lohnes D, Wang L (2010) Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys J 98(11):2442–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686

    Article  CAS  PubMed  Google Scholar 

  12. Pegg DE (2005) The role of vitrification techniques of cryopreservation in reproductive medicine. Hum Fertil (Camb) 8(4):231–239

    Article  CAS  Google Scholar 

  13. Reubinoff BE, Pera MF, Vajta G, Trounson AO (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16(10):2187–2194

    Article  CAS  PubMed  Google Scholar 

  14. Richards M, Fong CY, Tan S, Chan WK, Bongso A (2004) An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22(5):779–789

    Article  PubMed  Google Scholar 

  15. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H (1998) Open Pulled Straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51(1):53–58

    Article  CAS  PubMed  Google Scholar 

  16. Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A (1999) Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 14(12):3077–3079

    Article  CAS  PubMed  Google Scholar 

  17. Dinnyes A, Dai Y, Jiang S, Yang X (2000) High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 63(2):513–518

    Article  CAS  PubMed  Google Scholar 

  18. Dobrinsky JR (2002) Advancements in cryopreservation of domestic animal embryos. Theriogenology 57(1):285–302

    Article  CAS  PubMed  Google Scholar 

  19. Suemori H, Yasuchika K, Hasegawa K, Fujioka T, Tsuneyoshi N, Nakatsuji N (2006) Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochem Biophys Res Commun 345(3):926–932

    Article  CAS  PubMed  Google Scholar 

  20. Wu CF, Tsung HC, Zhang WJ, Wang Y, Lu JH, Tang ZY, Kuang YP, Jin W, Cui L, Liu W, Cao YL (2005) Improved cryopreservation of human embryonic stem cells with trehalose. Reprod Biomed Online 11(6):733–739

    Article  PubMed  Google Scholar 

  21. Muldrew K, McGann LE (1994) The osmotic rupture hypothesis of intracellular freezing injury. Biophys J 66(2 Pt 1):532–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao DY, Liu J, Liu C, McGann LE, Watson PF, Kleinhans FW, Mazur P, Critser ES, Critser JK (1995) Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum Reprod 10(5):1109–1122

    CAS  PubMed  Google Scholar 

  23. Fujikawa S (1980) Freeze-fracture and etching studies on membrane damage on human erythrocytes caused by formation of intracellular ice. Cryobiology 17(4):351–362

    Article  CAS  PubMed  Google Scholar 

  24. Mazur P, Cole KW (1989) Roles of unfrozen fraction, salt concentration, and changes in cell volume in the survival of frozen human erythrocytes. Cryobiology 26(1):1–29

    Article  CAS  PubMed  Google Scholar 

  25. Miyazaki T, Nakatsuji N, Suemori H (2014) Optimization of slow cooling cryopreservation for human pluripotent stem cells. Genesis 52(1):49–55

    Article  CAS  PubMed  Google Scholar 

  26. Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, Hayashi M, Kumagai H, Nakatsuji N, Sekiguchi K, Kawase E (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:1236

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ji L, de Pablo JJ, Palecek SP (2004) Cryopreservation of adherent human embryonic stem cells. Biotechnol Bioeng 88(3):299–312

    Article  CAS  PubMed  Google Scholar 

  28. Ware CB, Nelson AM, Blau CA (2005) Controlled-rate freezing of human ES cells. Biotechniques 38(6):879–880, 882–873

    Article  CAS  PubMed  Google Scholar 

  29. Claassen DA, Desler MM, Rizzino A (2009) ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Mol Reprod Dev 76(8):722–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li X, Krawetz R, Liu S, Meng G, Rancourt DE (2009) ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum Reprod 24(3):580–589

    Article  CAS  PubMed  Google Scholar 

  31. Martin-Ibanez R, Unger C, Stromberg A, Baker D, Canals JM, Hovatta O (2008) Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum Reprod 23(12):2744–2754

    Article  CAS  PubMed  Google Scholar 

  32. Mollamohammadi S, Taei A, Pakzad M, Totonchi M, Seifinejad A, Masoudi N, Baharvand H (2009) A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells. Hum Reprod 24(10):2468–2476

    Article  CAS  PubMed  Google Scholar 

  33. Lee JY, Lee JE, Kim DK, Yoon TK, Chung HM, Lee DR (2010) High concentration of synthetic serum, stepwise equilibration and slow cooling as an efficient technique for large-scale cryopreservation of human embryonic stem cells. Fertil Steril 93(3):976–985

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Suemori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miyazaki, T., Suemori, H. (2016). Slow Cooling Cryopreservation Optimized to Human Pluripotent Stem Cells. In: Karimi-Busheri, F., Weinfeld, M. (eds) Biobanking and Cryopreservation of Stem Cells. Advances in Experimental Medicine and Biology, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-319-45457-3_5

Download citation

Publish with us

Policies and ethics