Skip to main content

Interpretations and Modeling

  • Chapter
  • First Online:
Electromagnetic Seabed Logging
  • 526 Accesses

Abstract

This chapter describes the various methods of interpretation of electromagnetic data. After a succinct recollection of the approach to solve the forward problem determined from the Maxwell equations and Ohm’s law, several methods of resolution are proposed. These involve either analytical 1D models considering some (quasistatic) approximations or numerical models for higher-order dimensions. Analytical equation resolutions have been favored for their educational value considering geological canonic models and relatively simple integration methods. Then we recall some data inversion techniques, which allow us to directly access specific resistivity values of the subsoil and therefore to detect the presence or absence of hydrocarbons. Finally we describe the analog models that concretely allow us to establish special detection devices or check some assumptions.

Theory is when one knows everything but nothing works. Practice is when everything works but nobody knows why.

(Albert Einstein)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As in previous chapters, we recall, throughout the presentation, a brief history of the interpretation methods, allowing us to follow the evolution of ideas and concepts that have led to current techniques.

  2. 2.

    Scope of action of transient methods, for example.

  3. 3.

    Only electric logs (wireline or MWD) are able to provide the “true” resistivity. This assumes, of course, that the geological layers are crossed by a drilling (borehole).

  4. 4.

    This corresponds, as discussed later, to the resolution of the inverse problem.

  5. 5.

    “To interpret is to establish relations of cause and effect between the structure of the subsoil and the highlighted physical phenomena, it is to deduce what are (or possibly what are not) the geological structures compatible with a specific anomaly. These relations of cause and effect between structure and anomaly are conceivable only in numerical form, in other words mathematics. Whether one likes it or not, the interpretation is only a mathematical problem ”(Cagniard 1950).

  6. 6.

    The mathematical problem applies above all to geological data, i.e., to facts of observation that fix reality at a certain moment in time and in space. We can thus arrive at valid conclusions only if we take into account this natural reality, which can be obtained by sufficient knowledge of the local geology. The more numerous and reliable the geological data are, the less theoretical and long the mathematical work of the interpretation will be.

  7. 7.

    It is easier for now to memorize a series of abacuses than to run numerical calculation codes on embarked units and more particularly on seabed sensors.

  8. 8.

    See the definition in Appendix 2.5.

  9. 9.

    The first to be put into practice and still used.

  10. 10.

    Not always easy to get.

  11. 11.

    In the 1950s, these models, locked in cabinets, were completely automated and controlled by a panel where it was possible to set different combinations with electromechanical switches.

  12. 12.

    As discussed later, cylindrical and spherical coordinates are also used.

  13. 13.

    At the frequencies, the propagation term (second term) disappears.

  14. 14.

    Weber’s law allows us to connect the images theory developed by Hummel to that of S. Stefanescu (Lasfargues 1957).

  15. 15.

    The integration of linear partial differential equations with a constant coefficient was built very naturally at the beginning (A. Cauchy) based on theorems of existence and uniqueness, then providing analytical integrals in the form of power series, where the coefficients were calculated by recurrence from the initial conditions and boundary conditions. According to their research, physicists realized pretty quickly that certain series of special functions (Bessel functions, Legendre polynomials, etc.) highlighted, better than the power series, the properties of integrals. However, these integrals such as the series converge only very slowly, which limits the calculation of apparent resistivity in practice.

  16. 16.

    It is necessary to know that these methods offer incomparable implementation flexibility with respect to the complexity of the considered media, but require on the other hand the monopolization of significant computational resources not always compatible with the data stream.

  17. 17.

    The reader will find in the works of Professors Parker (Parker 1994) and Scales (Scales et al. 2001) an excellent introduction to the resolution of the inverse problem in the field of geophysics. The works of Professor Tarantola, however, are more difficult to access (Tarantola 1981, 2005).

  18. 18.

    The resolution of the inverse problem must, according to the French mathematician J. Hadamard match to “a well-posed problem”—i.e., that its solution must imperatively respond to three separate criteria: to exist, be unique and stable with respect to measurement errors.

  19. 19.

    Cited by Wenner but not demonstrated by the author (see, more precisely, Appendix A2.2).

  20. 20.

    With few exceptions (mise à la masse, spontaneous polarization), electrical methods have never been used for the detection of a local anomaly, this type of investigation being reserved for the field of electromagnetic methods. The reader will find details on the development of these techniques in general works on electrical prospecting (Keller and Frischknecht 1966).

  21. 21.

    DC marine models (calculations) are not restricted as in situ investigations (measurements) and may in some cases be useful for the interpretation of low frequency data.

  22. 22.

    Under these conditions, we introduce the time factor, which must be strictly considered.

  23. 23.

    In these cases, the devices then undergo phenomena of induction (a temporal change of flux, creating secondary currents).

  24. 24.

    It was in 1932 that Maxwell equations were introduced (for the first time) in the interpretation of geophysical data (Peters and Bardeen 1932).

  25. 25.

    The theory is recalled in the Appendix to Chap.2 (cf. Eq. A2.1.4).

  26. 26.

    Infinitely resistant layer, with also infinite thickness, being under the sedimentary substratum. This case answers the question of the presence or of the absence of hydrocarbons. It doesn’t give any information about the layer thickness.

  27. 27.

    Provided that the depth of water does not exceed a priori, according to some authors, 15 m (Lagabrielle et al. 2001).

  28. 28.

    It is possible to acquire this information by performing crossword profiles.

  29. 29.

    Theory introduced by Lord Kelvin in 1845 for electrostatics (Thomson 1884; Ramsey 1937) and more generally in electrodynamics by Maxwell in 1848, for which a definition of the electrical image is given on page 246 of his treatise on electricity and magnetism (Maxwell 1892).

  30. 30.

    This was the first interpretation method employed in the 1930s by the German Hummel (series expansion), showing that under the reciprocity theorem (see Chap. 2, Appendix A2.2) the question to be addressed was similar to an optical reflection problem. This technique was proposed for the first time by the physicist Thomson (1845–1884). It preceded the methods of the Schlumberger school and particularly those developed by Sabba Stefanescu using, in particular, integration methods for a half-space:

    V(r) = RI/2πr [1 + 2r∫ A(t)J o(rt)dt].

    Although less elegant than the latter, the Hummel series is more suitable for numerical calculations. We do not detail here the Stefanescu/Schlumberger method, which the reader will find in all books on applied geophysics more particularly about electrical methods (Kunetz 1966; Telford et al. 1978) or more generally about wave propagation in a stratified medium (Bannister 1968).

  31. 31.

    The problem of calculating the response of a laminate subsoil to electromagnetic solicitation was resolved early in the twentieth century (Sommerfeld 1909; Weyl 1919).

  32. 32.

    Reminder: we can distinguish by electrical sounding only sets powerful enough to affect diagrams in a measurable way. The most favorable structures in this regard are series formed by alternating resistant and conductive sedimentary layers whose thickness increases with depth. The diagram is then formed by a sequence of hollows and bumps that allow us to read:

    • The horizontal conductances (h/ρ) of the conductor sets

    • The transverse resistances (hρ) of the resistant sets

    Each survey thus provides:

    • At one point, valuable information on the conductance of the subsoil at this point

    • From one point to another, the changes (deformation of the diagram) in conductors and resistants in space, i.e., in the thicknesses if the facies do not vary

  33. 33.

    First (in the 1960s) implemented in big systems (IBM 1620), mathematical models were gradually installed (in the 1970s) on portable microcomputers of the HP85 type (64KB of memory, expandable to 128KB using a specific programming language: HP basic) and then the compatible PC type (in the 1980s).

  34. 34.

    The theoretical response of a spherical anomaly in an alternative regime is extremely complex to carry out. Therefore, as a first approximation (low frequency approximation), we prefer calculation in a continuous regime (Telford et al. 1978). Under these conditions, the equation of diffusion is reduced to the Laplace equation.

  35. 35.

    It may be assumed that the injection of an alternating current whose injection poles (EM source) are opposed in phase, for example, is similar to the injection of a polarized DC (+/−).

  36. 36.

    This can be modeled by arranging some subtleties (see Appendix A5.4 ).

  37. 37.

    See Professor Tai’s work (Tai 1971).

  38. 38.

    Also called a dyadic Green’s function, this function then connects the scalar equations with vector equations. The Green functions, sensu stricto, are used among others in the methods of numerical resolution by integrals (Roach 1970; Eskola 1992). Their definition is given in Footnote 28 of Chap. 3: Metrology.

  39. 39.

    The energy of the source must disperse to infinity (no return).

  40. 40.

    Before the inversion operation, the data undergo, if necessary, a migration (see Sect. 4.5.5.1), the results of which can then be compared to the inverted data (Zhdanov et al. 1996; Zhdanov and Portniaguine 1997; Mittet et al. 2005).

  41. 41.

    It is therefore important to remove the data that do not check this distribution, thereby improving the variance of the solution. For a series of noisy data (p = 1 or less), other laws are applied.

  42. 42.

    We get an idea of the theoretical model, thanks to external elements supplied by seismic or geological data.

  43. 43.

    The methods of Levenberg–Macquardt (see below) or those using Gauss/Newton-type optimization techniques, for example, can also be used (Chave and Jones 2012; Amaya 2015). These algorithms (Marquardt 1963) are often complemented by regulation and smoothing techniques to stabilize the inversion process. The latter are based on calculation of the sensitivity matrix at the measurement point. This matrix is calculated numerically by methods such as those for the moments, the finite differences or finite elements.

  44. 44.

    The credibility of the model with regard to the measurements is determined by the mean square error or RMS (root mean square).

  45. 45.

    We can say, as Professor Claerbout pointed out in his book, that there are as many inversion methods as there are article writers (Claerbout 1992).

  46. 46.

    We refer the reader to the specialized literature (Hohmann and Raiche 1987; Glasko 1988; Parker 1994; Colton and Kress 1992; Buland et al. 1996; Zhdanov 2002a, b, c; Hoversten et al. 2006; Stefano and Colombo 2006; Abubakar et al. 2007, 2008; Gribenko and Zhdanov 2007; Bornatici et al. 2007; Roth and Zach 2007; Plessix and Van der Sman 2007; Zeng et al. 2007; Mittet et al. 2007a, 2008; Carrazone et al. 2008; Jing et al. 2008; Plessix and Van der Sman 2008; Price et al. 2008; Zach et al. 2008a, b, c, d; Troyan and Kiselev 2009; Nguyen and Roth 2010; Kumar 2010).

  47. 47.

    The first inversion method to be used for electrical soundings.

  48. 48.

    Developed by Legendre (1805) and Gauss (1809).

  49. 49.

    Software sold by the French company IMAGIR (Brest).

  50. 50.

    A similar “holographic” process and details of the calculations are described, for example, in a US patent (Zhdanov 2001).

  51. 51.

    For more information, the general principles of migration are treated in various articles and books to which the reader can refer (Zhdanov et al. 1996; Zhdanov 2009). Firstly, as in seismic prospecting, the migration technique was used to correct seabed relief effect and bathemetry raw data errors.

  52. 52.

    The principle of Occam’s razor states that if two hypotheses have the same degree of probability, then we favor the simplest hypothesis (the parsimony principle). The procedure is a direct application of Bayestheorem, where the simplest hypothesis then presents the higher probability (see Sect. 5.3.1). The predictive techniques that use the principle of Occam do not guarantee the accuracy of the model.

  53. 53.

    Characterizes the evolution of computer power. Probably changed in the future by the appearance of quantum microprocessors.

  54. 54.

    Free software originally developed by Apple.

  55. 55.

    Technique using the graphic processor unit (GPU) to perform all the calculations instead of the central processor unit (CPU), which is slower.

  56. 56.

    Formerly called an electrolytic tank or, more commonly, a bathtub in memory of the first experiments performed in 1911 by Conrad Schlumberger at the Ecole des Mines in Paris (Allaud and Martin 1976; Gruner Schlumberger 1982).

  57. 57.

    At this level, it important to take into account the wavelength in order to choose the transmission frequency (tank), while meeting the above criteria.

  58. 58.

    In this case, it is recommended to choose not too small a tank and to perform the measurement at its center. One can also choose walls in a conductive material so that they are at the same potential: this was the case with C. Schlumberger’s bath.

References

Several references in this following list correspond to appendices A5.1 to A5.7

  • Abubakar A, van den Berg PM, Mallorqui JJ (2004) Imaging a biomedical data using a multiplicative regularized contrast source inversion method. IEEE Trans Microw Theory Techn 50:1761–1771

    Article  Google Scholar 

  • Aboubakar A et al (2007) A two and half dimensional model based inversion algorithm for the controlled source electromagnetic data. In: SPE annual technical conference and exhibition California, 11–14 November, SPE 110054

    Google Scholar 

  • Abubakar A, Habashy TM, Druskin VL, Knizhnerman L, Alumbaugh D (2008) 2.5D forward and inverse modeling for interpreting low frequency electromagnetic measurements. Geophysics 73(4):F165–F177

    Google Scholar 

  • Allaud LA, Martin MH (1976) Schlumberger. The story of a technique. Ed. Wiley, pp 15–17

    Google Scholar 

  • Amaya M (2015) High-order optimization methods for large-scale 3D CSEM data inversion. PhD thesis, NTNU, Trondheim, October, pp 53–83

    Google Scholar 

  • Anderson TW et al (1972) An introduction to multivariate statistical analysis. Series in probability and statistics. Ed. Wiley, New York

    Google Scholar 

  • Andreis D (2008) Electromagnetic surveying for resistive or conductive bodies. US patent no. 7362102

    Google Scholar 

  • Angot A (1982) Compléments de mathématiques à l’usage des ingénieurs de l’électronique et des télécommunications. Ed. Masson, Paris

    Google Scholar 

  • Arfken B (1968) Mathematical methods for physicists. Academic, New York

    Google Scholar 

  • Backus G, Gilbert F (1967) Numerical applications of a formation for geophysical inverse problems. GJ 13, pp 247–276

    Google Scholar 

  • Bailey RC (1970) Inversion of the geomagnetic induction problem. Proc R Soc A 315:185–184

    Article  Google Scholar 

  • Bailey RC (2008) The electrical response of an insulating circular disk to uniform field. Progress Electromag Res 88:241–254

    Article  Google Scholar 

  • Bannister PR (1968) The image theory quasi-static fields of antennas above the earth surface. Naval Underwater Systems Center report

    Google Scholar 

  • Bannister PR et al (1965) Quasi-static electromagnetic fields. Scientific engineering studies. Naval Underwater Systems Center report

    Google Scholar 

  • Bannister PR et al (1987a) Quasi-static electromagnetic fields. Scientific and engineering studies, Naval Underwater Systems Center, New-London

    Google Scholar 

  • Bannister PR (1987b) Simplified expressions for the electromagnetic fields of elevated, surface or buried dipole antennas. Compiled 87 vol. 1, Scientific and Engineering Studies, Naval Underwater Systems Center, New-London, Connecticut

    Google Scholar 

  • Baranov W (1951) lnterprétation quantitative des mesures en prospection par courants telluriques. 3ème congrès mondial du pétrole, The Hague

    Google Scholar 

  • Bayes (1763) An essay towards solving a problem in the doctrine of chances. By the Late Rev. Mr. Bayes, F. R. S communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Philos Trans, pp 370–418

    Google Scholar 

  • Beaufort L (1944) Etude des champs téllurique en baignoire. Note technique no. 44 (tellurique). Ed. CGG

    Google Scholar 

  • Boissonnas E (1946) Note sur les mesures en baignoire. Note technique no. 74 (tellurique). Ed. CGG

    Google Scholar 

  • Bornatici L, Mackie R, Watts MD (2007) 3D inversion of marine CSEM data and its application to survey design. In: EGM conference proceedings, Capri, Italy

    Google Scholar 

  • Boursian WR (1933) La théorie des champs électromagnétiques employés dans la prospection électrique. 1ère partie, GTTI (in Russian)

    Google Scholar 

  • Bracewell RN (1986) The Fourier transform and its applications. McGraw-Hill, New York, 474 p

    Google Scholar 

  • Brillouin M (1933) Fonctions sphériques. Formules générales de récurrence. Développement des fonctions non antipodes en séries de polynômes de Legendre et de Laplace. Ed. Gauthier-Villars, Paris, 4 p

    Google Scholar 

  • Brillouin M (1938) Qu’apprend-on de l’intérieur du globe par les mesures faites à sa surface? Pesanteur, magnétisme. Annales de l’I.H.P, tome 8, no. 4.Ed. Gauthier-Villars, pp 151–192

    Google Scholar 

  • Buland A, More H (2003) Bayesian linearized AVO inversion. Geophysics 68: 185–198

    Google Scholar 

  • Buland A et al (1996) AVO inversion of Troll field data. Geophysics 61: 1589–1602

    Google Scholar 

  • Butkov E (1968) Mathematical physics. Ed. Addison-Wesley, Reading

    Google Scholar 

  • Cagniard L (1950) La prospection géophysique. Ed. Presses universitaires de France, Paris, p 32

    Google Scholar 

  • Cagniard L, Neale RN (1957) Technique nouvelle de modèles réduits pour la prospection électrique. Geophys Prospect 5:259–271

    Article  Google Scholar 

  • Carrazone JJ et al (2008) Inversion study of a large marine CSEM survey. SEG 2008 Expanded Abstracts, Las Vegas

    Google Scholar 

  • Chave AD (1983) Numerical evaluation of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48(12):1671–1686

    Article  Google Scholar 

  • Chave AD (2009) On the electromagnetic fields produced by marine frequency domain controlled sources. Geophys J Int 179, 29 p

    Google Scholar 

  • Chave AD, Cox CS (1982) Controlled electromagnetic sources for measuring electrical conductivity beneath the ocean 1. Forward problem and model study. J Geophys Res 87(B7):5327–5338

    Article  Google Scholar 

  • Chave AD, Jones AG (2012) The magnetotelluric method: theory and practice, pp 382–383 and 337–420

    Google Scholar 

  • Cheesman SJ, Edwards RN, Chave AD (1987) On the theory of sea floor conductivity mapping using transient electromagnetic systems. Geophysics 52:204–217

    Article  Google Scholar 

  • Chisholm JSR, Morris RM (1965) Mathematical methods in physics. W B Saunders Company, Philadelphia, 719 p

    Google Scholar 

  • Claerbout JF (1976) Fundamentals of geophysical data processing with applications to petroleum prospecting. MacGraw-Hill, New York

    Google Scholar 

  • Claerbout JF (1992) Earth sounding analysis. Processing versus inversion. Ed. Blackwell Scientific Publications, Boston, p xiv

    Google Scholar 

  • Colton D, Kress R (1992) Inverse acoustic and electromagnetic inverse scattering theory. Ed. Springer, Berlin

    Book  Google Scholar 

  • Commer M, Newman GA (2008a) Optimal conductivity reconstruction using three-dimensional joint and model-based inversion for controlled-source and magnetotelluric data. SEG 2008 Expanded Abstracts, Las Vegas

    Book  Google Scholar 

  • Commer M, Newman G (2008b) New advances in three dimensional controlled source electromagnetic inversion. Geophys J Int 172:513–535

    Article  Google Scholar 

  • Commer M et al (2008) Massively parallel electrical conductivity imaging of hydrocarbons using the Blue Gene/L supercomputer. University of California. Paper LBNL 63009. 34 p

    Google Scholar 

  • Constable SC, Weiss CJ (2006) Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modelling. Geophysics 71(2)

    Google Scholar 

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300

    Article  Google Scholar 

  • Cuma M et al (2010) Multiple inversion scenarios for enhanced interpretation of marine CSEM data using iterative migration: a case study for the Shtokman gas field, Barents Sea. SEG Denver, annual meeting, pp 583–587

    Google Scholar 

  • de Stefano M, Colombo D (2006) Geophysical modeling through simultaneous joint inversion of seismic, gravity and magneto-telluric data. WesternGeco EM, Geosystem, Milan

    Google Scholar 

  • Durand E (1966) Electrostatique. 3 tomes. 1: Les distributions. 2: Problèmes généraux conducteurs. 3: Méthodes de calcul diélectriques. Ed. Masson, Paris

    Google Scholar 

  • Eaton PA, Kaufman AA (2001) The theory of inductive prospecting. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam

    Google Scholar 

  • Edwards RN, Chave AD (1986) A transient electric dipole–dipole method for mapping the conductivity of the sea floor. Geophysics 51:984–987

    Article  Google Scholar 

  • Ehrenbourg DO, Watson RJ (1931) Mathematical theory of electrical flow in the stratified strata. AIME Geophys Prospect 1932:423–442

    Google Scholar 

  • Eskola L (1992) Geophysical interpretation using integral equations. Chapman & Hall, London, 191 p

    Book  Google Scholar 

  • Everett ME, Edwards RN (1993) Transient marine electromagnetics—the 2.5-D forward problem. Geophys J Int 113(3):545–561

    Google Scholar 

  • Flath H (1955) A pratical method of calculating geoelectrical model graphs for horizontally stratified media. Presented at the eighth meeting of the European Association of Exploration Geophysicists, held in Paris, 18/20 May

    Google Scholar 

  • Flosadottir AH, Constable S (1996) Marine controlled source electromagnetic sounding: modelling and experimental design. J Geophys Res 101(4):5507–5517

    Article  Google Scholar 

  • Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of DC resistivity and seismic data. Geophys Res Lett 30:1658

    Google Scholar 

  • Glasko VB (1988) Inverse problems of mathematical physics. American Institute of Physics, New York, 97 p

    Google Scholar 

  • Glinsky ME, Gunning JS (2011) Resolution and uncertainty of inversion CSEM remote sensing data can now be estimated using Bayesian statistic. World Oil, January, pp 87–62

    Google Scholar 

  • Goudswaard W (1957) On the effect of the tank wall material in geo-electrical model experiments. Geophys Prospect 5(3):272–281

    Article  Google Scholar 

  • Grand FS, West GF (1965) Interpretation theory in applied geophysics. McGraw-Hill, New York

    Google Scholar 

  • Gray A, Mathews GB (1922) Treatise on Bessel function and their application to physics. Macmillan, London, 291 p

    Google Scholar 

  • Green G (1850) An essay on the application of mathematical analysis to the theory of electricity & magnetism. J Reine Angew Math 39:73–79

    Google Scholar 

  • Grellier S (2005) Suivi géologique des centres de stockage de déchet bio-réacteurs par mesures géophysiques. Doctoral thesis, Université Pierre et Marie Curie

    Google Scholar 

  • Gribenko A, Zhdanov M (2007) Rigorous 3D inversion of marine CSEM data based on the integral equation method. Geophysics 72:WA73–WA84

    Article  Google Scholar 

  • Gruner Schlumberger A (1982) The Schlumberger adventure. Ed. Arco Publishing, New York, p 1

    Google Scholar 

  • Gunning JS, Glinsky ME (2009) Bayesian approaches to resolution in CSEM. In: 71st EAGE conference and exhibition, Amsterdam, 8–11 June

    Google Scholar 

  • Gunning JS, Glinsky ME, Heddith J (2010) Resolution and uncertainty in 1D CSEM inversion: a Bayesian approach and open-source implementation. Geophysics 75:F151–F171

    Google Scholar 

  • Habashy TM (1985) Quasi-static electromagnetic fields due to dipole antennas in bounded conducting media. EEE Trans Geosci Remote Sens GE-23(3):325–333

    Article  Google Scholar 

  • Hansen DA et al (1967) Mining geophysics, vol B: theory. Ed. Society of Exploration geophysicists, Tulsa, pp 63–83

    Google Scholar 

  • Hautot S, Tarits P (2010) 3D magnetotelluric inversion of 2D profiles: application to land and marine data for shallow crustal investigation. ASEG, Sydney

    Google Scholar 

  • Heaviside O (1899) Electromagnetic theory, 3 vols. Ed. Electrician Printing and Publishing, London

    Google Scholar 

  • Heiland CA (1931) The department of geophysics. Vol xxvi no. 1, Suppl. A. Ed. Colorado School of Mines, Golden, p 21

    Google Scholar 

  • Hohmann GW (1975) Three dimensional induced polarization and electromagnetic modeling. Geophysics 71:309–324

    Article  Google Scholar 

  • Hohmann GW (1989) Numerical modeling for electromagnetic methods of geophysics. Electromagnetic methods in applied geophysics, vol 1 Theory. Ed. Society of Exploration Geophysicists, Tulsa, pp 313–318

    Google Scholar 

  • Hohmann GW, Raiche AP (1987) Inversion of controlled source electromagnetic data in electromagnetic methods in applied geophysics. Geophysics 1:469–503

    Google Scholar 

  • Hou Z et al (2006) Reservoir parameter identification using minimum relative entropy based Bayesien inversion of seismic AVA and marine CSEM. Geophysics 71(6):077–088

    Article  Google Scholar 

  • Hoversten GM et al (2006) Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data. Geophysics 71(3):1–13

    Article  Google Scholar 

  • Hummel JK (1928) Über die Tiefenwirkung bei geoelektrischer Potentiallaienmethoden., Zeitschrift für Geophysik

    Google Scholar 

  • Hummel JK (1929a) Der scheinbare spezifische Widerstand. Zeitschrift für Geophysik. T.5, no. 3–5, p 89

    Google Scholar 

  • Hummel JK (1929b) Der scheinbare spezifische Widerstand bei vier plan parallelen Schichten. Zeitschrift für Geophysik. T.5, no. 5–6, p 228

    Google Scholar 

  • Idier J (2008) Bayesian approach to inverse problems. ISTE—Wiley, London

    Book  Google Scholar 

  • Inman JR, Ryu J, Ward SH (1973) Resistivity inversion. Geophysics 38:1088–1108

    Article  Google Scholar 

  • Jackson JD (1965) Classical electrodynamics. Ed. Wiley, New York, 641 p

    Google Scholar 

  • Janovskij BM, Molocnov G (1959) Modellversuche mit niederfrequenten elektrischen Feld. Freib Forsch, pp 17–29

    Google Scholar 

  • Jaysaval P, Shantsev VD, de la Kethulle de Ryhove S (2015) Efficient 3-D controlled-source electromagnetic modelling using an exponential finite-difference method. Geophys J Int 203:1541–1574

    Google Scholar 

  • Jeans JH (1933) The mathematical theory of electricity and magnetism. Cambridge University Press, Cambridge

    Google Scholar 

  • Jeffreys H (1939) Theory of probability. Clarendon, Oxford, 380 p

    Google Scholar 

  • Jeffreys H, Jeffreys B (1956) Methods of mathematical physics. Cambridge University Press, Cambridge, 714 p

    Google Scholar 

  • Jegen MD, Edwards RN (2000) On the physics of marine magnetotelluric sounding. Geophys Int 142

    Google Scholar 

  • Jing C, Green KE, Willen DE (2008) CSEM inversion: impact of anisotropy, data coverage, and initial models. SEG 2008 Expanded Abstracts, Las Vegas

    Google Scholar 

  • Johansen S et al (2008) How EM analysis validates current technology, processing and interpretation methodology. First Break 26:83–88

    Google Scholar 

  • Jouanne V (1991) Application des techniques statistiques bayésiennes à l’inversion de données électromagnétiques. Doctoral thesis, Université de Paris

    Google Scholar 

  • Kaufman AA (1994a) Geophysical field theory and method, part B, volume 48: electromagnetic fields I, international geophysics. Ed. Elsevier, Amsterdam

    Google Scholar 

  • Kaufman AA (1994b) Geophysical field theory and method, part C, volume 49: electromagnetic fields II, international geophysics. Ed. Elsevier, Amsterdam, 335 p

    Google Scholar 

  • Kaufman AA, Eaton PA (2001) The theory of inductive prospecting. Elsevier, Amsterdam, 681 p

    Google Scholar 

  • Kaufman AA, Hoekstra P (2001) Electromagnetic sounding. Elsevier, Amsterdam

    Google Scholar 

  • Kaufman AA, Keller GV (1983) Frequency and transient soundings. Ed. Elsevier, Amsterdam, pp 411–450

    Google Scholar 

  • Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Ed. Pergamon Press, Oxford, p 1104

    Google Scholar 

  • Key KW (2003) Application of broadband marine magneto-telluric exploration to a 3-D salt structure and a fast spreading ridge. PhD dissertation, University of California, San Diego

    Google Scholar 

  • Key KW (2007) Adaptive finite element modeling for 2D electromagnetic problems using unstructured grids. Scripps Institution of Oceanography, La Jolla

    Google Scholar 

  • Key KW (2009) 1D inversion of multicomponent, multifrequency marine CSEM data: methodology and synthetic studies for resolving thin resistive layers. Geophysics 74(2):F9–F20

    Article  Google Scholar 

  • Key K, Ovall J (2011) A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophys J Int 186(1):137–154

    Article  Google Scholar 

  • Koefoed O (1968) The application of the kernel function in interpreting geoelectrical resistivity measurements. Geoexploration monographs. Series 1, no. 2. Ed. Gebruder Borntraeger, Berlin

    Google Scholar 

  • Koefoed O (1980) Geosounding principles, 1. Resistivity sounding measurements. Methods in geochemistry and geophysics 14 A. Ed. Elsevier, Amsterdam

    Google Scholar 

  • Korchounov Y (1975) Fondements mathématiques de la cybernétique. Ed. Mir, Moscou, pp 282–290

    Google Scholar 

  • Kraichman MB (1970) Handbook of electromagnetic propagation in conducting media. US Government Printing Office, Washington, DC

    Google Scholar 

  • Kumar A (2010) Inversion of magnetotelluric data in offshore hydrocarbon exploration. VDM Verlag Dr. Mueller, Saarbrücke, 72 p

    Google Scholar 

  • Kunetz G (1966) Principles of direct current resistivity prospecting. Geopublication associates. Geoexploration monographs. Series 1, no. 1. Ed. Gebruder Borntraeger, Berlin

    Google Scholar 

  • Lagabrielle R et al (2001) Reconnaissance par prospection électrique du sous-sol marin pour le nouveau port du Havre. Geofcan, Géophysique des sols et des formations superficielles. Actes du 3ème colloque, Orléans, 25–26 September. Ed. INRA, pp 149–153

    Google Scholar 

  • Lamb H (1924) Evolution of mathematical physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Langer RE (1933) An inverse problem in differential equations. Am Soc Math J 39:14–28

    Google Scholar 

  • Langer RE (1936) On determination of earth conductivity from observed surface potentials. Am Soc Math J vol 42

    Google Scholar 

  • Lasfargues P (1957) Prospection électrique par courants continus. Manuel de prospection géophysique. Ed. Masson, Paris, pp 76–81

    Google Scholar 

  • Laurent H (1873) Traité de calcul des probabilités. Ed. Gauthier-Villars, Paris, pp 56–61

    Google Scholar 

  • Lee S et al (1987) Phase-field imaging: the electromagnetic equivalent of seismic migration. Geophysics 52(5):678–693

    Article  Google Scholar 

  • Li Y, Key K (2007) 2D marine controlled-source electromagnetic modeling: part 1—an adaptive finite-element algorithm. Geophysics 72(2): WA51–WA62

    Google Scholar 

  • Litvinov SY (1941) Electrical sea prospecting.. Gostoptekhizdat

    Google Scholar 

  • Lorentz HA (1927) Lectures on theoretical physics, vol 3. Ed. Macmillan, London

    Google Scholar 

  • Loseth LO (2007) Modeling of controlled source electromagnetic data. PhD thesis, Université norvégienne, 186 p

    Google Scholar 

  • Maao F (2007) Fast finite-difference time-domain modelling for marine-subsurface electromagnetic problems. Geophysics 72(2):A19–A23

    Article  Google Scholar 

  • MacGregor LM (2012) Integrating seismic, CSEM and well log data for reservoir characterisation. The Leading Edge, pp 268–277

    Google Scholar 

  • MacGregor LM, Tomlinson J (2014a) Marine controlled-source electromagnetic methods in the hydrocarbon industry: a tutorial on method and practice. SEG Interpretation 2(3): SH24–SH25

    Google Scholar 

  • MacGregor LM, Tomlinson J (2014b) Marine controlled-source electromagnetic methods in the hydrocarbon industry: a tutorial on method and practice. Interpretation 2(3):SH13–SH32

    Google Scholar 

  • MacGregor LM, Constable SC, Sinha MC (1998) The RAMESSES experiment-III. Controlled-source electromagnetic sounding of the Reykjanes Ridge at 57° 45’N. Geophy J Int 135(3):773–789

    Google Scholar 

  • MacGregor L, Sinha M, Constable S (2001) Electrical resistivity structure of the Valu Fa Ridge, Lau Basin, from marine controlled-source electromagnetic sounding. Geophys J Int 146:217–236

    Article  Google Scholar 

  • MacGregor LM, Bouchrara S, Tomlinson JT, Strecker U, Fan J, Ran X, Yu G (2012) Integrated analysis of CSEM, seismic and well log date for prospect appraisal: a case study from West Africa. First Break 30: 77–82

    Google Scholar 

  • Maillet R (1947) The fundamental equations of electrical prospecting. Geophysics 12(4): 529–556

    Google Scholar 

  • Marescot L (2006) Un algorithme d’inversion par moindres carrés pondérés: application aux données géophysiques par méthodes électromagnétiques en domaine fréquence. Bulletin de géologie de l’Université de Lausanne, no. 357, pp 277–300

    Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of non linear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  • Maxwell JC (1873, 1892) A treatise on electricity and magnetism, vol 1. Ed. Clarendon, Oxford, pp 245–280

    Google Scholar 

  • Maxwell JC (1884) Traité élémentaire d’électricité. Ed. Gauthier-Villars, Paris, pp 91–92

    Google Scholar 

  • Medkour, M. (1984). Prospection électrique par la technique dipôle-dipôle: interprétation quantitative et application à la géophysique structurale et minière. Doctoral thesis, Université de Nancy

    Google Scholar 

  • Meju MA (1994) Geophysical data analysis. Understanding inverse problem theory and practice. Society of Exploration Geophysicists course notes series, vol 6. Ed. SEG Publishers, 296 p

    Google Scholar 

  • Menke W (1984) Geophysical data analysis: discrete inverse theory. Academic, San Diego

    Google Scholar 

  • Menke W (1989) Geophysical data analysis: discrete inverse theory, Edition réviséeth edn. Ed. Elsevier, Amsterdam, 289 p

    Google Scholar 

  • Mitsuhata Y (2004) Adjustment of regularization in ill-posed linear inverse problems by the empirical Bayes approach. Geophys Prospect 52(3):213–239

    Article  Google Scholar 

  • Mittet R, Schaug-Pettersen T (2007) Shaping optimal transmitter waveforms for marine CSEM surveys. In: San SEG 2007 conference proceedings, San Antonio

    Google Scholar 

  • Mittet R et al (2005) A two-step approach to depth migration of low frequency electromagnetic data. Paper presented at the 75th SEG conference & exhibition, Houston, USA, 6–11 November

    Google Scholar 

  • Mittet R et al (2007a) On the orientation and absolute phase of marine CSEM receivers. Geophysics 72:145–155

    Google Scholar 

  • Mittet R et al (2007b) CMP inversion of marine CSEM data. In: EMG international workshop, innovation in EM, Grav. and Mag. methods, a new perspective for exploration, Capri, Italy, 15–18 April

    Google Scholar 

  • Mittet R et al (2008) CMP inversion and post inversion modelling for marine CSEM data. First Break 26:59–57

    Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of theoretical physics. Ed. McGraw-Hill, New York, Tome 2, p 1769

    Google Scholar 

  • Nabighian MN (1987) Electromagnetic methods in applied geophysics. Theory, vol 1. Ed. Society of Exploration Geophysicists, Tulsa

    Google Scholar 

  • Neri P (2011) GPU rendering for volume visualization. New capabilities improve accessibility quality of renderings and accelerate workflow. Offshore. Ed. Pennwell, pp 60–63

    Google Scholar 

  • Newman GA, Alumbaugh DL (1997) Three-dimensional massively parallel electromagnetic inversion part I. Theory. Geophys J Int 128:345–354

    Article  Google Scholar 

  • Newman GA, Høversten, GM (2000) Solution strategies for toward three-dimensional electromagnetic inverse problems. Inverse Prob 16: 1357–1375

    Google Scholar 

  • Nguyen AK, Roth F (2010) Application of the frequency differenced field to 3D inversion of shallow water CSEM data. In: EGM international workshop. Adding new value to electromagnetic, gravity and magnetic methods for exploration, Capri, 11–14 April

    Google Scholar 

  • Oldenburg (1992) Inversion of magneto-telluric data for a one-dimensional conductivity. Geophysical monograph. Series 1, no. 5. Ed. Gebruder Borntraeger, Berlin

    Google Scholar 

  • Oritaglio M, Spies B (2000) Three-dimensional electromagnetics. Geophys Dev Ser V V:7

    Google Scholar 

  • Panofsky WKH, Phillips M (1955) Classical electricity and magnetism. Ed. Addison-Wesley, Reading

    Google Scholar 

  • Papoulis A (1962) The Fourier integral and its application. Ed. McGraw-Hill, New York, 318 p

    Google Scholar 

  • Parker RL (1970) The inverse problem of electric conductivity in the mantle. Geophys J 22:121–138

    Article  Google Scholar 

  • Parker RL (1994) Geophysical inverse theory. Ed. Princeton University Press, Princeton, 400 p

    Google Scholar 

  • Patella D, Schiavone D (1974) A theoretical study of the kernel function for resistivity prospection with a Schlumberger apparatus in water. Annali di geofisica 27(1–2):295–313

    Google Scholar 

  • Patra HP, Mallick (1980) Geosounding principles, 2. Time varying geo electric soundings. Methods in geochemistry and geophysics 14 B. Ed. Elsevier, Amsterdam, pp 17–45

    Google Scholar 

  • Pellerin L, Wannameker PE (2005) Multi-dimensional electromagnetic modelling and inversion with application to near surface earth investigation. Computers and electronics in agriculture. 46. Ed. Elsevier, New York, pp 71–102

    Google Scholar 

  • Peters LJ, Bardeen L (1932) Some aspects of electrical prospecting applied in locating oil structures. Physics 2:1–20

    Article  Google Scholar 

  • Piyoosh J, Daniil VS, Sébastien de la Kethulle de Ryhove (2015) Efficient 3-D controlled-source electromagnetic modelling using an exponential finite-difference method. Geophys J Int 203(3): 1541–1574

    Google Scholar 

  • Plessix RE, Van der Sman P (2007) 3D CSEM modeling and inversion in complex geological settings. Expanded Abstracts, SEG 2007 annual meeting, San Antonio

    Google Scholar 

  • Plessix RE, Van der Sman P (2008) Regularized and blocky controlled source electromagnetic inversion. PIERS 2008, Cambridge, MA

    Google Scholar 

  • Plonsey R, Collin RE (1961) Principles and applications of electromagnetic fields. Ed. McGraw-Hill, New York, 555 p

    Google Scholar 

  • Poirmeur C (1986). Modélisation tridimensionnelle en courant continu. Méthode et applications à la prospection géophysique. Doctoral thesis, Université de Montpellier, 232 p

    Google Scholar 

  • Porstendorfer G (1960) Tellurik. Grundlagen, Messtechnik und neue Einsatzmoglichkeiten. Ed. Akademie Verlag, Berlin

    Google Scholar 

  • Porstendorfer G (1975) Principles of magneto-telluric prospecting. Ed. Gebruder Borntraeger, Berlin, pp 47–51

    Google Scholar 

  • Press SJ (2007) Subjective and objective Bayesian statistics: principles, models and applications. Ed. Willey, Hoboken, 558 p

    Google Scholar 

  • Price A et al (2008) 1D, 2D and 3D modeling and inversion of 3D CSEM data offshore West Africa. SEG 2008 Expanded Abstracts, Las Vegas, NV, USA

    Google Scholar 

  • Rakoto H et al (1997) Réinterprétation par inversion bayésienne des sondages électriques sur le lac Tritrivakely. Colloque Geofcan, 11–12 September, Bondy, France,

    Google Scholar 

  • Ramsey AS (1937) Electricity and magnetism. An introduction to the mathematical theory. Ed. Cambridge University Press, Cambridge, p 115

    Google Scholar 

  • Roach GF (1970) Green’s functions. Introductory theory with applications. Ed. Cambridge University Press, Cambridge, 279 p

    Google Scholar 

  • Roman I (1934) How to compute tables for determining electrical resistivity of underlying beds and their application to geophysical problems. US Bur. Of Mines. Tech. Pub. 502. AIME Geophysical Prospecting, pp 183–200

    Google Scholar 

  • Roth F, Zach JJ (2007) Inversion of marine CSEM data using up-down wavefield separation and simulated annealing. In: SEG 2007 conference proceedings, San Antonio

    Google Scholar 

  • Sainson S (1984) Etude d’une méthode de détection électrique d’anomalies conductrices voisines d’un forage. Thèse de doctorat en géophysique, Université d’Orléans, 177 p

    Google Scholar 

  • Sainson S (2010) Les diagraphies de corrosion. Acquisition et interprétation des données. Ed. Tec et Doc Lavoisier, Paris, pp 77–81

    Google Scholar 

  • Sarkisov GA, Andreyev LI (1964) Results and potential of marine electrical prospecting in the Caspian Sea. Int Geol Rev 6(9):1573–1584

    Article  Google Scholar 

  • Scales et al (2001) Introductory geophysical inverse theory. Ed. Samizdat Press, Golden, 208 p

    Google Scholar 

  • Schiavone D, Patella D (1974) A direct interpretation method for Schlumberger resistivity soundings with the apparatus immersed in water. In: 19th annual international geophysical symposium, Torun, Poland

    Google Scholar 

  • Shantsev D, Maaø F (2015) Rigorous interpolation near tilted interfaces in 3-D finite-difference EM modelling. Geophys J Int 200:745–757

    Article  Google Scholar 

  • Shen LC, Kong JA (1983) Applied electromagnetism. Ed. Brooks, Monterey, pp 326–339

    Google Scholar 

  • Sinha M, Macgregor LM (2003) Electromagnetic surveying for hydrocarbon reservoirs. University of Southampton. GB patent no. 2 382 875

    Google Scholar 

  • Slichter LB (1933) The interpretation of the resistivity prospecting method for horizontal structures. Physics 4:307–322

    Article  Google Scholar 

  • Smith WH, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55(3):293–305

    Article  Google Scholar 

  • Smythe WR (1939) Static and dynamic electricity. McGraw-Hill, New York

    Google Scholar 

  • Sommerfeld A (1909) Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Annalen des Physik 386:1135–1153

    Google Scholar 

  • Sommerfeld A (1912) Die Greensche Funktionen der Schwingungsgleichung. Jahresber Deutsch Math Verein 21:309–353

    Google Scholar 

  • Sommerfeld A (1952) Electrodynamics. Lectures of theoretical physics, vol 3. Ed. Academic, New York

    Google Scholar 

  • Stefanescu S, Schlumberger C (1930) Sur la distribution électrique potentielle autour d'une prise de ponctuelle dans un terrain à couches horizontal, homogènes et isotropes. J Physique et le Radium I 4:132–140

    Article  Google Scholar 

  • Stokes GG (1880) Mathematical and physical papers. Cambridge University Press, Cambridge

    Google Scholar 

  • Strack KM (1999) Exploration with deep transient electromagnetics. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam

    Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York, 615 p

    Google Scholar 

  • Tai CT (1971) Dyadic Green’s function in electromagnetic theory. Ed. Intext Educational Publishers, Scranton, 246 p

    Google Scholar 

  • Tarantola A (1981) Essai d’une approche générale du problème inverse. Ed. Université Pierre et Marie Curie, Institut de Physique du Globe de Paris

    Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, Amsterdam, 358 p

    Book  Google Scholar 

  • Telford WM et al (1978) Applied geophysics. Ed. Cambridge University, London, pp 647–649

    Google Scholar 

  • Terekhin EI (1962) Theoretical bases of electrical probing with an apparatus immersed in water. Applied geophysics USSR. Ed. Pergamon Press, Oxford, pp 169–195

    Google Scholar 

  • Thomson W (1884) Reprint of papers on electrostatics and magnetism. Ed. Macmillan, London, p 144

    Google Scholar 

  • Tikhonov AN (1943) On the stability of inverse problems. Doklady 39(5): 195–198 (in Russian)

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. V H Winston and Sons, Washington

    Google Scholar 

  • Tompkins M (2005) Electromagnetic surveying for hydrocarbon reservoir. US patent no. 7,191,063

    Google Scholar 

  • Troyan V, Kiselev Y (2009) Statistical methods of geophysical data. World Scientific Publishing, London

    Google Scholar 

  • Twomey S (1977) An introduction to the mathematics of inversion in remote sensing and indirect measurements. Elsevier, Amsterdam

    Google Scholar 

  • Unsworth MJ, Travis BJ, Chave AD (1993) Electromagnetic induction by a finite electric dipole source over a 2-D earth. Geophysics 58:198–214

    Article  Google Scholar 

  • Utzmann R (1954) Prospection électrique et tellurique: études sur modèles réduits. Bulletin de l’AFTP no. 107. 60 p

    Google Scholar 

  • Vannamaker et al (1984) Electromagnetic modeling of three dimensional bodies in layers media earths using integral equations. Geophysics 49: 60–74

    Google Scholar 

  • Verma Rajni K (1986) Offshore seismic exploration: data acquisition, processing, interpretation. Gulf Publishing, Houston, 591 p

    Google Scholar 

  • Wait JR (1971) Electromagnetic probing in geophysics. Ed. The Golem Press, Boulder, pp 291–293

    Google Scholar 

  • Ward SH et al (1967) Mining geophysics, vol 2. Theory. Ed. Society of Exploration Geophysicists Mining Geophysics, Tulsa

    Google Scholar 

  • Weaver JT (1967) The quasi-static field of an electric dipole embedded in a two-layer conducting half-space. Can J Phys 45:1981–2002

    Article  Google Scholar 

  • Weaver JT (1994) Mathematical methods for geo-electromagnetic induction. Research Studies Press, Somerset

    Google Scholar 

  • Wenner F (1916) A method of measuring earth resistivity. US Dept. Com. Cur. of Stand. Sc. paper no. 258

    Google Scholar 

  • Werthmüller D, Ziolkowski A, Wright D (2014) Predicting controlled-source electromagnetic responses from seismic velocities. Interpretation 2(3):SH115–SH131

    Article  Google Scholar 

  • Weyl H (1919) Ausbreitung elektromagnetischer Wellen über einen ebenen Leiter. Annalen des Physik 60:481–500

    Article  Google Scholar 

  • Wiik et al (2010) TIV contrast source inversion of nCSEM data. Norwegian University of Science and Technology, pp 6–9

    Google Scholar 

  • Wijewardena K (2007) Introduction to Fourier transforms in physics. Cambridge University, Cambridge

    Google Scholar 

  • Wilson W (1933) Theoretical physics. Electromagnetism and optics. Maxwell, Lorentz, vol 2. Ed. Methuen, London, 315 p

    Google Scholar 

  • Wu X, Sandberg S, Roper T (2008) Three-dimensional marine magneto-telluric resolution for sub-salt imaging and case study in the Gulf of Mexico. SEG 2008 Expanded Abstracts, Las Vegas

    Google Scholar 

  • Zaborovski A (1936) Problème de sphère dans la théorie de la prospection électrique. Bulletin géophysique pétrolière 2, 8 p

    Google Scholar 

  • Zach JJ et al (2008a) 3D inversion of marine CSEM data using a fast finite-difference time-domain forward code and approximate Hessian-based optimisation, Las Vegas

    Google Scholar 

  • Zach JJ, Roth F, Yuan H (2008b) Pre-processing of marine CSEM data and model preparation for frequency-domain 3D inversion. PIERS In: Proceedings, Cambridge, USA, 2–6 July, pp 144–148

    Google Scholar 

  • Zach JJ, Bjørke AK, Støren T, Maaø F (2008c) 3D inversion of marine CSEM data using a fast finite-difference time-domain forward code and approximate Hessian-based optimization. SEG 2008 Expanded Abstracts, Las Vegas, NV, USA

    Google Scholar 

  • Zach JJ, Roth F, Yuan H (2008d) Data pre-processing and starting model preparation for 3D inversion of marine CSEM surveys. EAGE 2008 Expanded Abstracts, Rome, Italy

    Google Scholar 

  • Zach JJ et al (2009) Salt mapping using 3D marine CSEM surveys. CSPG CSEG CWLS convention. Frontiers + innovation, Calgary, Canada, pp 428–431

    Google Scholar 

  • Zeng ZF et al (2007) The electromagnetic responses of under seabed layer and inversion method study. PIERS Online 3(2):197–201

    Article  Google Scholar 

  • Zhangshuan H et al (2006) Reservoir-parameter identification using minimum relative entropy-based Bayesian inversion of seismic AVA and marine CSEM data. Geophysics 71(6):77–88

    Google Scholar 

  • Zhdanov MS (2001) Method of broad band electromagnetic holographic imaging. US patent no. 6253.100, June 26

    Google Scholar 

  • Zhdanov MS (2002a) Geophysical inverse theory and regularization problems. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam

    Google Scholar 

  • Zhdanov MS (2002b) Three dimensional electromagnetics. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam

    Google Scholar 

  • Zhdanov MS (2002c) Geophysical inverse theory and regularization problems. Volume 36. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam

    Google Scholar 

  • Zhdanov MS (2009) Geophysical electromagnetic theory and methods. Methods in geochemistry and geophysics, vol 43. Ed. Elsevier, Amsterdam, 848 p

    Google Scholar 

  • Zhdanov MS (2015) Inverse theory and applications in geophysics. Ed. Elsevier, Amsterdam, pp 1–15

    Google Scholar 

  • Zhdanov MS, Keller GV (1994) The geoelectrical methods in geophysical exploration. Elsevier, Amsterdam

    Google Scholar 

  • Zhdanov MS, Portniaguine O (1997) Time-domain electromagnetic migration in the solution of inverse problems. Geophys J Int 131:293–309

    Article  Google Scholar 

  • Zhdanov MS, Traynin P, Booker JR (1996) Underground imaging by frequency-domain electromagnetic migration. Geophysics 61(3):666–682

    Article  Google Scholar 

  • Zhdanov MS et al (2010) Exploring multiple 3D inversion scenarios for enhanced interpretation of marine CSEM data: an iterative migration analysis of the Shtokman gas field. First Break 28:95–101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sainson, S. (2017). Interpretations and Modeling. In: Electromagnetic Seabed Logging. Springer, Cham. https://doi.org/10.1007/978-3-319-45355-2_5

Download citation

Publish with us

Policies and ethics