Skip to main content

Accuracy of High-Altitude Photogrammetric Point Clouds in Mapping

  • Conference paper
  • First Online:
The Rise of Big Spatial Data

Abstract

During the past decade, airborne laser scanning (ALS) has established its status as the state-of-the-art method for detailed forest mapping and monitoring. Current operational forest inventory widely utilizes ALS-based methods. Recent advances in sensor technology and image processing have enabled the extraction of dense point clouds from digital stereo imagery (DSI). Compared with ALS data, the DSI-based data are cheap and the point cloud densities can easily reach that of ALS. In terms of point density, even the high-altitude DSI-based point clouds can be sufficient for detecting individual tree crowns. However, there are significant differences in the characteristics of ALS and DSI point clouds that likely affect the accuracy of tree detection. In this study, the performance of high-altitude DSI point clouds was compared with low-density ALS in detecting individual trees. The trees were extracted from DSI- and ALS-based canopy height models (CHM) using watershed segmentation. The use of both smoothed and unsmoothed CHMs was tested. The results show that, even though the spatial resolution of the DSI-based CHM was better, in terms of detecting the trees and the accuracy of height estimates, the low-density ALS performed better. However, utilizing DSI with shorter ground sample distance (GSD) and more suitable image matching algorithms would likely enhance the accuracy of DSI-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann F (1999) Airborne laser scanning—present status and future expectations. ISPRS J Photogramm Remote Sens 54(2):64–67

    Article  Google Scholar 

  • Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens 33(B4/1; PART 4):111–118

    Google Scholar 

  • Gaveau DL, Hill RA (2003) Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Can J Remote Sens 29(5):650–657

    Article  Google Scholar 

  • Held A, Ticehurst C, Lymburner L, Williams N (2003) High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing. Int J Remote Sens 24(13):2739–2759

    Article  Google Scholar 

  • Hirschmüller H (2008) Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30(2):328–341

    Article  Google Scholar 

  • Holopainen M, Vastaranta M, Hyyppä J (2014) Outlook for the next generation’s precision forestry in Finland. Forests 5(7):1682–1694

    Article  Google Scholar 

  • Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser scanner. Photogramm J Finl 16(2):27–42

    Google Scholar 

  • Hyyppä J, Kelle O, Lehikoinen M, Inkinen M (2001) A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans Geosci Remote Sens 39(5):969–975

    Article  Google Scholar 

  • Järnstedt J, Pekkarinen A, Tuominen S, Ginzler C, Holopainen M, Viitala R (2012) Forest variable estimation using a high-resolution digital surface model. ISPRS J Photogramm Remote Sens 74:78–84

    Article  Google Scholar 

  • Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Morsdorf F, Næsset E (2012) An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens 4(4):950–974

    Article  Google Scholar 

  • Koch B, Heyder U, Weinacker H (2006) Detection of individual tree crowns in airborne lidar data. Photogramm Eng Remote Sens 72(4):357–363

    Article  Google Scholar 

  • Korpela I (2004) Individual tree measurements by means of digital aerial photogrammetry, vol 3. Finnish Society of Forest Science Helsinki, Finland

    Google Scholar 

  • Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003) LiDAR remote sensing of forest structure. Prog Phys Geogr 27(1):88–106

    Article  Google Scholar 

  • Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80(1):88–99

    Article  Google Scholar 

  • Nurminen K, Karjalainen M, Yu X, Hyyppä J, Honkavaara E (2013) Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables. ISPRS J Photogramm Remote Sens 83:104–115

    Article  Google Scholar 

  • Olofsson K, Lindberg E, Holmgren J (2008) A method for linking field-surveyed and aerial-detected single trees using cross correlation of position images and the optimization of weighted tree list graphs. In: Proceedings of SilviLaser 2008: 8th international conference on LiDAR applications in forest assessment and inventory, Edinburgh, UK, 17–19 September 2008, pp 95–104

    Google Scholar 

  • Packalén P, Maltamo M (2008) Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs. Can J For Res 38(7):1750–1760

    Article  Google Scholar 

  • Persson A, Holmgren J, Söderman U (2002) Detecting and measuring individual trees using an airborne laser scanner. Photogramm Eng Remote Sens 68(9):925–932

    Google Scholar 

  • Pitkänen J, Maltamo M, Hyyppä J, Yu X (2004) Adaptive methods for individual tree detection on airborne laser based canopy height model. Int Arch Photogramm Remote Sens Spatial Inf Sci 36(8):187–191

    Google Scholar 

  • Reynolds MR, Burk TE, Huang W-C (1988) Goodness-of-fit tests and model selection procedures for diameter distribution models. For Sci 34(2):373–399

    Google Scholar 

  • St-Onge B, Jumelet J, Cobello M, Véga C (2004) Measuring individual tree height using a combination of stereophotogrammetry and lidar. Can J For Res 34(10):2122–2130

    Article  Google Scholar 

  • Vastaranta M, Wulder MA, White JC, Pekkarinen A, Tuominen S, Ginzler C, Kankare V, Holopainen M, Hyyppä J, Hyyppä H (2013) Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. Can J Remote Sens 39(5):382–395

    Google Scholar 

  • Vauhkonen J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkänen J, Solberg S, Wang Y, Weinacker H, Hauglin KM, Lien V (2012) Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85(1):27–40

    Google Scholar 

  • Wehr A, Lohr U (1999) Airborne laser scanning—an introduction and overview. ISPRS J Photogramm Remote Sens 54(2):68–82

    Article  Google Scholar 

  • White JC, Stepper C, Tompalski P, Coops NC, Wulder MA (2015) Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests 6(10):3704–3732

    Article  Google Scholar 

  • White JC, Wulder MA, Vastaranta M, Coops NC, Pitt D, Woods M (2013) The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests 4(3):518–536

    Article  Google Scholar 

  • Yu B, Gong P, Pu R (1999) Penalized discriminant analysis of in situ hyperspectral data for conifer species recognition. IEEE Trans Geosci Remote Sens 37(5):2569–2577

    Article  Google Scholar 

  • Yu X, Hyyppä J, Kukko A, Maltamo M, Kaartinen H (2006) Change detection techniques for canopy height growth measurements using airborne laser scanner data. Photogramm Eng Remote Sens 72(12):1339–1348

    Article  Google Scholar 

Download references

Acknowledgments

This study has been conducted with funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under Grant Agreement Number 606971, Finnish Cultural Foundation under grant 00150939, and from the Academy of Finland in the form of the Centre of Excellence in Laser Scanning Research (Project Number 272195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Topi Tanhuanpää .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tanhuanpää, T. et al. (2017). Accuracy of High-Altitude Photogrammetric Point Clouds in Mapping. In: Ivan, I., Singleton, A., Horák, J., Inspektor, T. (eds) The Rise of Big Spatial Data. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-45123-7_13

Download citation

Publish with us

Policies and ethics