Skip to main content

On the Range of Exponential Functionals of Lévy Processes

  • Chapter
  • First Online:
Séminaire de Probabilités XLVIII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2168))

Abstract

We characterize the support of the law of the exponential functional \(\int _{0}^{\infty }e^{-\xi _{s-}}\,d\eta _{s}\) of two one-dimensional independent Lévy processes ξ and η. Further, we study the range of the mapping Φ ξ for a fixed Lévy process ξ, which maps the law of η 1 to the law of the corresponding exponential functional \(\int _{0}^{\infty }e^{-\xi _{s-}}\,d\eta _{s}\). It is shown that the range of this mapping is closed under weak convergence and in the special case of positive distributions several characterizations of laws in the range are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.B. Ash, C.A. Dolèans-Dade, Probability & Measure, 2nd edn. (Academic, New York, 2000)

    MATH  Google Scholar 

  2. O.E. Barndorff–Nielsen, N. Shephard, Modelling by Lévy processes for financial econometrics, in Lévy Processes: Theory and Applications, ed. by O.E. Barndorff-Nielsen, T. Mikosch, S. Resnick (Birkhäuser, Boston, 2001), pp. 283–318

    Google Scholar 

  3. A. Behme, Distributional properties of solutions of dV t  = V t dU t + dL t with Lévy noise. Adv. Appl. Probab. 43, 688–711 (2011)

    Google Scholar 

  4. A. Behme, A. Lindner, On exponential functionals of Lévy processes. J. Theor. Probab. (2013). doi:10.1007/s10959-013-0507-y

    MATH  Google Scholar 

  5. A. Behme, A. Schnurr, A criterion for invariant measures of Itô processes based on the symbol. Bernoulli 21 (3), 1697–1718 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Behme, A. Lindner, R. Maller, Stationary solutions of the stochastic differential equation dV t  = V t dU t + dL t with Lévy noise. Stoch. Process. Appl. 121, 91–108 (2011)

    Google Scholar 

  7. J. Bertoin, M. Yor, Exponential functionals of Lévy processes. Probab. Surv. 2, 191–212 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bertoin, A. Lindner, R. Maller, On continuity properties of the law of integrals of Lévy processes, in Séminaire de Probabilités XLI, ed. by C. Donati-Martin, M. Émery, A. Rouault, C. Stricker. Lecture Notes in Mathematics, vol. 1934 (Springer, Berlin, 2008), pp. 137–159

    Google Scholar 

  9. P. Billingsley, Probability and Measure, 3rd edn. Wiley Series in Probability and Mathematical Statistics (Wiley, New York, 1995)

    Google Scholar 

  10. N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  11. M. Braun, Differential Equations and Their Applications, 4th edn. (Springer, New York, 1993)

    Book  MATH  Google Scholar 

  12. P. Carmona, F. Petit, M. Yor, On the distribution and asymptotic results for exponential functionals of Lévy processes, in Exponential Functionals and Principal Values Related to Brownian Motion. Bibl. Rev. Mat. Iberoamericana (Rev. Mat. Iberoamericana, Madrid, 1997), pp. 73–130

    Google Scholar 

  13. R.A. Doney, R.A. Maller, Stability and attraction to normality for Lévy processes at zero and infinity. J. Theor. Probab. 15, 751–792 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. K.B. Erickson, R.A. Maller, Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals, in Séminaire de Probabilités XXXVIII, ed. by M. Emery, M. Ledoux, M., Yor. Lecture Notes in Mathematics, vol. 1857 (Springer, Berlin, 2005), pp. 70–94

    Google Scholar 

  15. H.K. Gjessing, J. Paulsen, Present value distributions with applications to ruin theory and stochastic equations. Stoch. Process. Appl. 71, 123–144 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Haas, V. Rivero, Quasi-stationary distributions and Yaglom limits of self-similar Markov processes. Stoch. Process. Appl. 122, 4054–4095 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Z.J. Jurek, J.D. Mason, Operator-Limit Distributions in Probability Theory (Wiley, New York, 1993)

    MATH  Google Scholar 

  18. Z.J. Jurek, W. Vervaat, An integral representation for self-decomposable Banach space valued random variables. Z. Wahrsch. Verw. Gebiete 62, 247–262 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. O. Kallenberg, Foundations of Modern Probability, 2nd edn. (Springer, Berlin, 2001)

    MATH  Google Scholar 

  20. A. Kuznetsov, J.C. Pardo, M. Savov, Distributional properties of exponential functionals of Lévy processes. Electron. J. Probab. 17, 1–35 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Liggett, Continuous Time Markov Processes. An Introduction. AMS Graduate Studies in Mathematics, vol. 113 (American Mathematical Society, Providence, RI, 2010)

    Google Scholar 

  22. A. Lindner, R. Maller, Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes. Stoch. Process. Appl. 115, 1701–1722 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.G. Llavona, Approximation of Continuously Differentiable Functions. Mathematics Studies, vol. 130 (North-Holland, Amsterdam, 1986)

    Google Scholar 

  24. T. Nilsen, J. Paulsen, On the distribution of a randomly discounted compound Poisson process. Stoch. Process. Appl. 61, 305–310 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.C. Pardo, V. Rivero, K. van Schaik, On the density of exponential functionals of Lévy processes. Bernoulli 19 (5A), 1938–1964 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Sato, Class L of multivariate distributions and its subclasses. J. Multivar. Anal. 10, 207–232 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Sato, Transformations of infinitely divisible distributions via improper stochastic integrals. ALEA 3, 67–110 (2007)

    MathSciNet  MATH  Google Scholar 

  28. K. Sato, Lévy Processes and Infinitely Divisible Distributions, revised edn. (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  29. R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions. Theory and Applications, 2nd edn. De Gruyter Studies in Mathematics, vol. 37 (Walter de Gruyter, Berlin, 2012)

    Google Scholar 

  30. F.W. Steutel, K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line (Dekker, New York, 2003)

    Book  MATH  Google Scholar 

  31. S.J. Wolfe, On a continuous analogue of the stochastic difference equation X n  = ρ X n−1 + B n . Stoch. Process. Appl. 12, 301–312 (1982)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for valuable suggestions which helped to improve the exposition of the manuscript. Makoto Maejima’s research was partially supported by JSPS Grand-in-Aid for Science Research 22340021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Behme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Behme, A., Lindner, A., Maejima, M. (2016). On the Range of Exponential Functionals of Lévy Processes. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLVIII. Lecture Notes in Mathematics(), vol 2168. Springer, Cham. https://doi.org/10.1007/978-3-319-44465-9_10

Download citation

Publish with us

Policies and ethics