Skip to main content

Optimal Aggregation of Components for the Solution of Markov Regenerative Processes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9826))

Abstract

The solution of non-ergodic Markov Renewal Processes may be reduced to the solution of multiple smaller sub-processes (components), as proposed in [4]. This technique exhibits a good saving in time in many practical cases, since components solution may reduce to the transient solution of a Markov chain. Indeed the choice of the components might significantly influence the solution time, and this choice is demanded in [4] to a greedy algorithm. This paper presents a computation of an optimal set of components through a translation into an integer linear programming problem (ILP). A comparison of the optimal method with the greedy one is then presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This logic implication is not in standard ILP form. It can be transformed [10] in ILP form as follows. Let U be a constant greater than |V|. Add a new variable \(k_{v,w}\) subject to these constraints: \(0 \le k_{v,w} \le 1\)\(U k_{v,w} - U < x_v -x_w \le U k_{v,w}\) and \(\forall D' \in \varvec{\mathcal {D}}\setminus \{D\}\) add \(y^{D'}_v \le y^{D'}_w + U k_{v,w}\).

References

  1. Amparore, E.G.: A new GreatSPN GUI for GSPN editing and CSL\(^{\!\text{TA}}\) model checking. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 170–173. Springer, Heidelberg (2014)

    Google Scholar 

  2. Amparore, E.G., Donatelli, S.: A component-based solution method for non-ergodic Markov regenerative processes. In: Aldini, A., Bernardo, M., Bononi, L., Cortellessa, V. (eds.) EPEW 2010. LNCS, vol. 6342, pp. 236–251. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Amparore, E.G., Donatelli, S.: MC4CSL\(^{\rm TA}\): an efficient model checking tool for CSL\(^{\rm TA}\). In: International Conference on Quantitative Evaluation of Systems, pp. 153–154. IEEE Computer Society, Los Alamitos (2010)

    Google Scholar 

  4. Amparore, E.G., Donatelli, S.: A component-based solution for reducible Markov regenerative processes. Perform. Eval. 70(6), 400–422 (2013)

    Article  Google Scholar 

  5. Amparore, E.G., Donatelli, S.: Improving and assessing the efficiency of the MC4CSL\(^{\rm TA}\) model checker. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 206–220. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Baarir, S., Beccuti, M., Cerotti, D., Pierro, M.D., Donatelli, S., Franceschinis, G.: The GreatSPN tool: recent enhancements. SIGMETRICS Perform. Eval. Rev. 36(4), 4–9 (2009)

    Article  Google Scholar 

  7. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

    Article  MATH  Google Scholar 

  8. Bondavalli, A., Mura, I.: High-level Petri net modelling of phased mission systems. In: 10th European Workshop on Dependable Computing, pp. 91–95, Vienna (1999)

    Google Scholar 

  9. Bondavalli, A., Filippini, R.: Modeling and analysis of a scheduled maintenance system: a DSPN approach. Comput. J. 47(6), 634–650 (2004)

    Article  Google Scholar 

  10. Brown, G.G., Dell, R.F.: Formulating integer linear programs: a rogues’ gallery. INFORMS Trans. Educ. 7(2), 153–159 (2007)

    Article  Google Scholar 

  11. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer, Secaucus (2006)

    MATH  Google Scholar 

  12. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with CSL\(^{\rm TA}\). IEEE Trans. Softw. Eng. 35(2), 224–240 (2009)

    Article  Google Scholar 

  13. German, R.: Performance Analysis of Communication Systems with Non-Markovian Stochastic Petri Nets. Wiley, New York (2000)

    MATH  Google Scholar 

  14. German, R.: Iterative analysis of Markov regenerative models. Perform. Eval. 44, 51–72 (2001)

    Article  MATH  Google Scholar 

  15. Mura, I., Bondavalli, A.: Markov regenerative stochastic petri nets to model and evaluate phased mission systems dependability. IEEE Trans. Comput. 50(12), 1337–1351 (2001)

    Article  Google Scholar 

  16. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvio Gilberto Amparore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Amparore, E.G., Donatelli, S. (2016). Optimal Aggregation of Components for the Solution of Markov Regenerative Processes. In: Agha, G., Van Houdt, B. (eds) Quantitative Evaluation of Systems. QEST 2016. Lecture Notes in Computer Science(), vol 9826. Springer, Cham. https://doi.org/10.1007/978-3-319-43425-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43425-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43424-7

  • Online ISBN: 978-3-319-43425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics