Skip to main content

The DNA Methylome: An Interface Between the Environment, Immunity, and Ageing

  • Chapter
  • First Online:
The Ageing Immune System and Health

Abstract

The characteristic effects of ageing observed across the human lifespan are accompanied by a multitude of molecular changes. These age-related changes are a result of the complex interaction between our genetic makeup, lifestyle factors, and unique environments. People are subject to a variety of different exposures; many of these influences have the potential to “mark” our DNA and actually alter our cellular processes. This is a key component of epigenetics: a field that focuses on modifications to DNA and DNA packaging that function without altering the genetic sequence itself. DNA methylation is arguably the most well-characterized epigenetic modification, involving the addition of a methyl group to DNA, which, in an interesting paradox, is both stable long-term as well as plastic and reversible. DNA methylation fluctuates throughout the lifespan of mammalian organisms and has the potential to influence cellular processes through changes in gene expression. An important role of DNA methylation is as a molecular mediator between environmental exposures and physiological changes, which makes it a likely modifier of the immune system. In regards to the ageing process, the actual function of DNA methylation is unknown; however, global trends and site-specific changes in DNA methylation have been strongly correlated with chronological age. Here, we will discuss the particulars of epigenetics, with a focus on DNA methylation and its role in the development, maturation, dysfunction, and ageing of white blood cells of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article  CAS  PubMed  Google Scholar 

  2. Ziller MJ, Müller F, Liao J, Zhang Y, Gu H, Bock C, et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 2011;7(12), e1002389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.

    Article  CAS  PubMed  Google Scholar 

  4. He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kochanek S, Renz D, Doerfler W. DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBO J. 1993;12(3):1141–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Alves G, Tatro A, Fanning T. Differential methylation of human LINE-1 retrotransposons in malignant cells. Gene. 1996;176(1-2):39–44.

    Article  CAS  PubMed  Google Scholar 

  7. Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457–66.

    Article  CAS  PubMed  Google Scholar 

  8. Kass SU, Landsberger N, Wolffe AP. DNA methylation directs a time dependent repression of transcription initiation. Curr Biol. 1997;7(3):157–65.

    Article  CAS  PubMed  Google Scholar 

  9. Jones PA. The DNA, methylation paradox. Trends Genet. 1999;15(1):34–7.

    Article  CAS  PubMed  Google Scholar 

  10. Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 2011;12(1):R10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, et al. Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A. 2012;109 Suppl 2:17253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gutierrez Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. Elife. 2013;2, e00523.

    PubMed  PubMed Central  Google Scholar 

  13. Jones MJ, Fejes AP, Kobor MS. DNA methylation, genotype and gene expression: who is driving and who is along for the ride? Genome Biol. 2013;14(7):126.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 2014;15(2):R37.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Edgar R, Tan PPC, Portales-Casamar E, Pavlidis P. Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin. 2014;7(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang H, Wang F, Kranzler HR, Yang C, Xu H, Wang Z, et al. Identification of methylation quantitative trait loci (mQTLs) influencing promoter DNA methylation of alcohol dependence risk genes. Hum Genet. 2014;133(9):1093–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD, et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet. 2014;10(9), e1004663.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fraser HB, Lam LL, Neumann SM, Kobor MS. Population-specificity of human DNA methylation. Genome Biol. 2012;13(2):R8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maurano MT, Wang H, John S, Shafer A, Canfield T, Lee K, et al. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 2015;12(7):1184–95.

    Article  CAS  PubMed  Google Scholar 

  20. Smith AK, Kilaru V, Kocak M, Almli LM, Mercer KB, Ressler KJ, et al. Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC Genomics. 2014;15:145.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, et al. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6:8570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trowbridge JJ, Snow JW, Kim J, Orkin SH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell. 2009;5(4):442–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol. 2010;28(10):1079–88. doi:10.1038/nbt.1684. http://www.nature.com/doifinder.

    Article  CAS  PubMed  Google Scholar 

  24. Calvanese V, Fernandez AF, Urdinguio RG, Suarez-Alvarez B, Mangas C, Pérez-García V, et al. A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res. 2012;40(1):116–31.

    Article  CAS  PubMed  Google Scholar 

  25. Suarez-Alvarez B, Rodriguez RM, Fraga MF, López-Larrea C. DNA methylation: a promising landscape for immune system-related diseases. Trends Genet. 2012;28(10):506–14.

    Article  CAS  PubMed  Google Scholar 

  26. Álvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E. Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol. 2014;15(1):7–17.

    Article  Google Scholar 

  27. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen S-E, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One. 2012;7(7), e41361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Challen GA, Sun D, Mayle A, Jeong M, Luo M, Rodriguez B, et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell. 2014;15(3):350–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bröske A-M, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet. 2009;41(11):1207–15.

    Article  PubMed  Google Scholar 

  31. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012;13(6):R43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LTY, Kohlbacher O, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500(7463):477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Farré P, Jones MJ, Meaney MJ, Emberly E, Turecki G, Kobor MS. Concordant and discordant DNA methylation signatures of aging in human blood and brain. Epigenetics Chromatin. 2015;8:19.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Koestler DC, Christensen B, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT, et al. Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics. 2013;8(8):816–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15(2):R31.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics. 2013;8(3):290–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics. 2014;30(10):1431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zou J, Lippert C, Heckerman D, Aryee M, Listgarten J. Epigenome-wide association studies without the need for cell-type composition. Nat Methods. 2014;11(3):309–11.

    Article  CAS  PubMed  Google Scholar 

  39. Cai C, Langfelder P, Fuller TF, Oldham MC, Luo R, van den Berg LH, et al. Is human blood a good surrogate for brain tissue in transcriptional studies? BMC Genomics. 2010;11(1):589.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hannon E, Lunnon K, Schalkwyk L, Mill J. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics. 2015;10(11):1024–32.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marsit CJ. Influence of environmental exposure on human epigenetic regulation. J Exp Biol. 2015;218(Pt 1):71–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Boyce WT, Kobor MS. Development and the epigenome: the “synapse” of gene-environment interplay. Dev Sci. 2015;18(1):1–23.

    Article  PubMed  Google Scholar 

  43. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13(2):97–109.

    CAS  PubMed  Google Scholar 

  44. Baccarelli A, Tarantini L, Wright RO, Bollati V, Litonjua AA, Zanobetti A, et al. Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics. 2010;5(3):222–8.

    Article  CAS  PubMed  Google Scholar 

  45. Bollati V, Baccarelli A. Environmental epigenetics. Heredity. 2010;105(1):105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Essex MJ, Boyce WT, Hertzman C, Lam LL, Armstrong JM, Neumann SMA, et al. Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence. Child Dev. 2013;84(1):58–75.

    Article  PubMed  Google Scholar 

  47. Monick MM, Beach SRH, Plume J, Sears R, Gerrard M, Brody GH, et al. Coordinated changes in AHRR methylation in lymphoblasts and pulmonary macrophages from smokers. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(2):141–51.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA, et al. Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet. 2013;22(5):843–51.

    Article  CAS  PubMed  Google Scholar 

  49. Fagny M, Patin E, MacIsaac JL, Rotival M, Flutre T, Jones MJ, et al. The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nat Commun. 2015;6:10047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Esposito EA, Jones MJ, Doom JR, MacIsaac JL, Gunnar MR, Kobor MS. Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Dev Psychopathol. 2016:1–15.

    Google Scholar 

  51. Stringhini S, Polidoro S, Sacerdote C, Kelly RS, van Veldhoven K, Agnoli C, et al. Life-course socioeconomic status and DNA methylation of genes regulating inflammation. Int J Epidemiol. 2015;44(4):1320–30.

    Article  PubMed  Google Scholar 

  52. Miller GE, Chen E, Fok AK, Walker H, Lim A, Nicholls EF, et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci U S A. 2009;106(34):14716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai H-J, Liu X, et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun. 2015;6:6304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013;31(2):142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Zhao M, Sawalha AH, Richardson B, Lu Q. Impaired DNA methylation and its mechanisms in CD4(+)T cells of systemic lupus erythematosus. J Autoimmun. 2013;41:92–9.

    Article  PubMed  Google Scholar 

  56. Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J, et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 2013;9(8), e1003678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gervin K, Vigeland MD, Mattingsdal M, Hammerø M, Nygård H, Olsen AO, et al. DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet. 2012;8(1), e1002454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y. DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun. 2014;50:33–7.

    Article  CAS  PubMed  Google Scholar 

  59. Laricade L, Urquiza JM, Gomez-Cabrero D, Islam ABMMK, López-Bigas N, Tegnér J, et al. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J Autoimmun. 2013;41:6–16.

    Article  Google Scholar 

  60. Pacis A, Tailleux L, Morin AM, Lambourne J, MacIsaac JL, Yotova V, et al. Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Res. 2015;25(12):1801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marr AK, MacIsaac JL, Jiang R, Airo AM, Kobor MS, McMaster WR. Leishmania donovani infection causes distinct epigenetic DNA methylation changes in host macrophages. PLoS Pathog. 2014;10(10), e1004419. http://dx.plos.org/10.1371/journal.ppat.1004419.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sinclair SHG, Yegnasubramanian S, Dumler JS. Global DNA methylation changes and differential gene expression in Anaplasma phagocytophilum-infected human neutrophils. Clin Epigenetics. 2015;7(1):77.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gebel K, Ding D, Chey T, Stamatakis E, Brown WJ, Bauman AE. Effect of moderate to vigorous physical activity on all-cause mortality in middle-aged and older Australians. Am Medical Assoc. 2015;175(6):970–7.

    Google Scholar 

  64. Christensen K, Johnson TE, Vaupel JW. The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet. 2006;7(6):436–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goronzy JJ, Li G, Weyand CM. DNA methylation, age-related immune defects, and autoimmunity. Epigenetics of aging. New York: Springer; 2010. p. 327–44.

    Google Scholar 

  66. Romanov GA, Vanyushin BF. Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochim Biophys Acta. 1981;653(2):204–18.

    Article  CAS  PubMed  Google Scholar 

  67. Hoal-van Helden EG, van Helden PD. Age-related methylation changes in DNA may reflect the proliferative potential of organs. Mutat Res. 1989;219(5-6):263–6.

    Article  CAS  PubMed  Google Scholar 

  68. Wilson VL, Smith RA, Ma S, Cutler RG. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 1987;262(21):9948–51.

    CAS  PubMed  Google Scholar 

  69. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A. 2012;109(26):10522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johansson A, Enroth S, Gyllensten U. Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One. 2013;8(6), e67378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5(8), e1000602.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130(4):234–9.

    Article  CAS  PubMed  Google Scholar 

  73. Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 2015;14(6):924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boks MP, van Mierlo HC, Rutten BPF, Radstake TRDJ, De Witte L, Geuze E, et al. Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology. 2015;51:506–12.

    Article  CAS  PubMed  Google Scholar 

  75. Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet. 2013;22(R1):R7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martin GM. Epigenetic drift in aging identical twins. Proc Natl Acad Sci U S A. 2005;102(30):10413–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestart ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.

    Article  CAS  PubMed  Google Scholar 

  79. Córdova-Palomera A, Fatjó-Vilas M, Gastó C, Navarro V, Krebs M-O, Fañanás L. Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Transl Psychiatry. 2015;5, e557.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Winnefeld M, Lyko F. The aging epigenome: DNA methylation from the cradle to the grave. Genome Biol. 2012;13(7):165.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y, Fischer D, et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci. 2009;12(12):1559–66.

    Article  CAS  PubMed  Google Scholar 

  82. Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, et al. Epigenetic predictor of age. PLoS One. 2011;6(6), e14821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014;15(2):R24.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Koch CM, Wagner W. Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY). 2011;3(10):1018–27.

    Article  CAS  Google Scholar 

  85. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Levine ME, Lu AT, Bennett DA, Horvath S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging (Albany NY). 2015;7(12):1198–211.

    Article  Google Scholar 

  87. Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, et al. Accelerated epigenetic aging in Down syndrome. Aging Cell. 2015;14(3):491–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. van Eijk KR, de Jong S, Strengman E, Buizer-Voskamp JE, Kahn RS, Boks MP, et al. Identification of schizophrenia-associated loci by combining DNA methylation and gene expression data from whole blood. Eur J Hum Genet. 2015;23(8):1106–10.

    Article  PubMed  Google Scholar 

  89. Wolf EJ, Logue MW, Hayes JP, Sadeh N, Schichman SA, Stone A, et al. Accelerated DNA methylation age: Associations with PTSD and neural integrity. Psychoneuroendocrinology. 2015;63:155–62.

    Article  PubMed  Google Scholar 

  90. Horvath S, Levine AJ. HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis. 2015;212(10):1563–73.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rickabaugh TM, Baxter RM, et al. Acceleration of age-associated methylation patterns in HIV-1-infected adults. PLoS One. 2015;10(3), e0119201. http://dx.plos.org/10.1371/journal.pone.0119201.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging (Albany NY). 2015;7(12):1130–42.

    Article  Google Scholar 

  93. Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S. DNA methylation age of blood predicts future onset of lung cancer in the women’s health initiative. Aging (Albany NY). 2015;7(9):690–700.

    Article  Google Scholar 

  94. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M, et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell. 2015;15(1):149–54.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Reynolds LM, Taylor JR, Ding J, Lohman K, Johnson C, Siscovick D, et al. Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat Commun. 2014;5:5366.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meaghan J. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McEwen, L.M., Goodman, S.J., Kobor, M.S., Jones, M.J. (2017). The DNA Methylome: An Interface Between the Environment, Immunity, and Ageing. In: Bueno, V., Lord, J., Jackson, T. (eds) The Ageing Immune System and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-43365-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43365-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43363-9

  • Online ISBN: 978-3-319-43365-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics