Skip to main content

TLR3 and Inflammatory Skin Diseases: From Environmental Factors to Molecular Opportunities

  • Chapter
  • First Online:
  • 1008 Accesses

Abstract

Toll-like receptors (TLRs) are cellular sensors designed to recognize pathogens. TLR3 recognizes viral double-stranded RNA, which is a molecular pattern produced by most viruses. Interestingly, there is increasing recognition of the role of TLR3 in non-infectious inflammatory diseases as well as viral infections. In addition, TLR3 recognizes not only exogenous threats such as virus but also endogenous host molecules associated with tissue injury. TLR3 is expressed on various cell types including keratinocytes, Langerhans cells, mast cells, and fibroblasts in the skin. Recent findings show that upon stimulation of TLR3 with exogenous or endogenous ligands, these cells are closely involved in the pathogenesis of infectious or inflammatory skin diseases such as viral infections or allergic and irritant contact dermatitis. Furthermore, TLR3 signaling is associated with barrier repair after tissue injury and itching sensation in the skin. Therefore, TLR3 may serve as a new therapeutic target for inflammatory skin diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  CAS  PubMed  Google Scholar 

  • Andersen LL, Mørk N, Reinert LS, Kofod-Olsen E, Narita R, Jørgensen SE, Skipper KA, Höning K, Gad HH, Østergaard L, Ørntoft TF, Hornung V, Paludan SR, Mikkelsen JG, Fujita T, Christiansen M, Hartmann R, Mogensen TH (2015) Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med 212:1371–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Applequist SE, Wallin RPA, Ljunggren HG (2002) Variable expression of toll-like receptor in murine innate and adaptive immune cell lines. Int Immunol 14:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular hsp 70: role of toll-like receptor (TLR)2 and TLR4. J Biol Chem 277:15028–15034

    Article  CAS  PubMed  Google Scholar 

  • Baker BS, Ovigne JM, Powles AV, Corcoran S, Fry L (2003) Normal keratinocytes express toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 148:670–679

    Article  CAS  PubMed  Google Scholar 

  • Bernard JJ, Cowing-Zitron C, Nakatsuji T, Muehleisen B, Muto J, Borkowski AW, Martinez L, Greidinger EL, Yu BD, Gallo RL (2012) Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med 18:1286–1290

    Article  CAS  PubMed  Google Scholar 

  • Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298:1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Borkowski AW, Park K, Ucida Y, Gallo RL (2013) Activation of TLR3 in keratinocytes increases expression of genes involved in formation of the epidermis, lipid accumulation, and epidermal organelles. J Invest Dermatol 133:2031–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borkowski AW, Kuo IH, Bernard JJ, Yoshida T, Williams MR, Hung NJ, Yu BD, Beck LA, Gallo RL (2014) Toll-like receptor 3 activation is required for normal skin barrier repair following UV damage. J Invest Dermatol 135:569–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, Morrison SG, Morrison RP, Arditi M (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through toll-like receptor 4 and MD2 in a My D88-dependent pathway. J Immunol 162:3212–3219

    Google Scholar 

  • Canavese M, Altruda F, Silengo L (2010) Therapeutic efficacy and immunological response of CCL5 antagonists in models of contact skin reaction. PLoS ONE 5:e8725

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavassani KA, Ishii M, Wen H, Schaller MA, Lincoln PM, Lukacs NW, Hogaboam CM, Kunkel SL (2008) TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med 205:2609–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corsini E, Galli CL (1998) Cytokines and irritant contact dermatitis. Toxicol Lett 102–3:277–282

    Article  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531

    Google Scholar 

  • Diogenes A, Ferraz CC, Akopian AN, Henry MA, Hargreaves KM (2011) LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res 90(6):759–764

    Article  CAS  PubMed  Google Scholar 

  • Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD (2002) IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168:3195–3204

    Article  CAS  PubMed  Google Scholar 

  • Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N, Sellevold OF, Espevik T, Sundan A (2002) Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 105:685–690

    Article  CAS  PubMed  Google Scholar 

  • Ermertcan AT, Öztürk F, Gündüz K (2011) Toll-like receptors and skin. J Eur Acad Dermatol Venereol 25:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Farina GA, York MR, Di Marzio M, Collins CA, Meller S, Homey B, Rifkin IR, Marshak-Rothstein A, Radstake TR, Lafyatis R (2010) Poly(I:C) drives type I IFN- and TGFβ-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. J Invest Dermatol 130:2583–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritsch PO, Ruiz-Maldonado R (2003) Erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis. In: Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI (eds) Fitzpatrick’s dermatology in general medicine, 6th edn. McGraw-hill, New York, pp 543–557

    Google Scholar 

  • Grabbe S, Schwart T (1998) Immunoregulatory mechanism involved in elicitation of allergic contact hypersensitivity. Immunol Today 19:37–44

    Article  CAS  PubMed  Google Scholar 

  • Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M (2002) Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves toll-like receptor 4. J Immunol 168:5989–5992

    Article  CAS  PubMed  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature 410:1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  CAS  PubMed  Google Scholar 

  • Honda T, Egawa G, Grabbe S, Kabashima K (2013) Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol 133:303–315

    Article  CAS  PubMed  Google Scholar 

  • Ikoma A, Steinhoff M, Stander S, Yosipovitch G, Schmelz M (2006) The neurobiology of itch. Nat Rev Neurosci 7:535–547

    Article  CAS  PubMed  Google Scholar 

  • Ishii KJ, Akira S (2008) Innate immunity. In: Rich RR, Fleisher TA, Shearer WT, Schroeder HW Jr, Frew AJ, Weyand CM (eds) Clinical immunology principles and practice, 3rd edn. Elsevier Ltd, Philadelphia, pp 39–51

    Google Scholar 

  • Jang S, Park JS, Won YH, Yun SJ, Kim SJ (2012) The expression of toll-like receptors (TLRs) in cultured human skin fibroblast in modulated by histamine. Chonnam Med J 48:7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson GB, Brunn GJ, Kodaira Y, Platt JL (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparin sulfate by toll-like receptor 4. J Immunol 168:5233–5239

    Article  CAS  PubMed  Google Scholar 

  • Kabashima K (2013) New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy and pruritus as a trinity. J Dermatol Sci 70:3–11

    Article  PubMed  Google Scholar 

  • Karikó K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for toll-like receptor 3. J Biol Chem 279:12542–12550

    Article  PubMed  Google Scholar 

  • Kato A, Favoreto S Jr, Avila PC, Schleimer RP (2007) TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J Immunol 179:1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptor and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    Article  CAS  PubMed  Google Scholar 

  • Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJC, Yamasaki S, Itaya M, Pan Y, Appukuttan B, Gibbs D, Yang Z, Karikó K, Ambati BK, Wilgus TA, DiPietro LA, Sakurai E, Zhang K, Smith JR, Taylor EW, Ambati J (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku JK, Kwon HJ, Kim MY, Kang H, Song PI, Armstrong CA, Ansel JC, Kim HO, Park YM (2008) Expression of Toll-like receptors in verruca and molluscum contagiosum. J Korean Med Sci 23(2):307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuraishi Y (2013) Potential new therapeutic targets for pathological pruritus. Biol Pharm Bull 36:1228–1234

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, von Aulock S, Radek KA, Huang CM, Ryan AF, Gallo RL (2009) Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med 15:1377–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Xu ZZ, Park CK, Berta T, Ji RR (2010) Toll-like receptor 7 mediates pruritus. Nat Neurosci 13:1460–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Berta T, Xu ZZ, Park CK, Zhang L, Lü N, Liu Q, Liu Y, Gao YJ, Liu YC, Ma Q, Dong X, Ji RR (2012) TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Invest 122:2195–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowy DR, Androphy EJ (2003a) Molluscum Contagiosum. In: Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI (eds) Fitzpatrick’s dermatology in general medicine, 6th edn. McGraw-hill, New York, pp 2114–2116

    Google Scholar 

  • Lowy DR, Androphy EJ (2003b) Warts. In: Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI (eds) Fitzpatrick’s dermatology in general medicine, 6th edn. McGraw-hill, New York, pp 2119–2130

    Google Scholar 

  • Mørk N, Kofod-Olsen E, Sørensen KB, Bach E, Ørntoft TF, Østergaard L, Paludan SR, Christiansen M, Mogensen TH (2015) Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes Immun 16:552–566

    Article  PubMed  Google Scholar 

  • Nakamura N, Tamagawa-Mineoka R, Ueta M, Kinoshita S, Katoh N (2015) Toll-like receptor 3 increases allergic and irritant contact dermatitis. J Invest Dermatol 135:411–418

    Article  CAS  PubMed  Google Scholar 

  • Ohashi K, Burkart V, Flohé S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561

    Article  CAS  PubMed  Google Scholar 

  • Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka S, Rose J, Chow JC, Strauss JF III (2001) The extra domain A of fibronectin activates toll-like receptor 4. J Biol Chem 276:10229–10233

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  CAS  PubMed  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  • Renn CN, Sanchez DJ, Ochoa MT, Legaspi AJ, Oh CK, Liu PT, Krutzik SR, Sieling PA, Cheng G, Modlin RL (2006) TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol 177:298–305

    Article  CAS  PubMed  Google Scholar 

  • Sebastiani S, Albanesi C, De PO, Puddu P, Cavani A, Girolomoni G (2002) The role of chemokines in allergic contact dermatitis. Arch Dermatol Res 293:552–559

    Article  CAS  PubMed  Google Scholar 

  • Seong SY, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4:469–478

    Article  CAS  PubMed  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med 189:1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167:2887–2894

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S (2002) Cutting edge: role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10–14

    Article  CAS  PubMed  Google Scholar 

  • Taves S, Ji RR (2015) Itch control by toll-like receptors. Handb Exp Pharmacol 226:135–150

    Article  CAS  PubMed  Google Scholar 

  • Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga M, Ozawa S, Tengara S, Ogawa H, Takamori K (2007) Intraepidermal nerve fibers increase in dry skin of acetone-treated mice. J Dermatol Sci 48(2):103–111

    Article  CAS  PubMed  Google Scholar 

  • Tsan MF, Gao B (2004) Endogenous ligands of toll-like receptors. J Leukoc Biol 76:514–523

    Article  CAS  PubMed  Google Scholar 

  • Ueta M, Hamuro J, Kiyono H, Kinoshita S (2005) Triggering of TLR3 by polyI: C in human corneal epithelial cells to induce inflammatory cytokines. Biochem Biophys Res Commun 331:285–294

    Article  CAS  PubMed  Google Scholar 

  • Ueta M, Sotozono C, Inatomi T, Kojima K, Tashiro K, Hamuro J, Kinoshita S (2007) Toll-like receptor 3 gene polymorphisms in Japanese patients with Stevens-Johnson syndrome. Br J Ophthalmol 91:962–965

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueta M, Uematsu S, Akira S, Kinoshita S (2009) Toll-like receptor 3 enhances late-phase reaction of experimental allergic conjunctivitis. J Allergy Clin Immunol 123:1187–1189

    Article  CAS  PubMed  Google Scholar 

  • Ueta M, Mizushima K, Yokoi N, Naito Y, Kinoshita S (2010) Gene-expression analysis of polyI:C-stimulated primary human conjunctival epithelial cells. Br J Ophthalmol 94:1528–1532

    Article  PubMed  Google Scholar 

  • Ueta M, Tamiya G, Tokunaga K, Sotozono C, Ueki M, Sawai H, Inatomi T, Matsuoka T, Akira S, Narumiya S, Tashiro K, Kinoshita S (2012) Epistatic interaction between toll-like recep-tor 3 (TLR3) and prostaglandin E receptor 3 (PTGER3) genes. J Allergy Clin Immunol 129:1413–1416

    Article  CAS  PubMed  Google Scholar 

  • Ueta M, Kaniwa N, Sotozono1 C, Tokunaga K, Saito Y, Sawai H, Miyadera H, Sugiyama E, Maekawa K, Nakamura R, Nagato M, Aihara M, Matsunaga K, Takahashi Y, Furuya H, Muramatsu M, Ikezawa Z, Kinoshita1 S (2014) Independent strong association of HLA-A*02:06 and HLA-B*44:03 with cold medicine-related Stevens-Johnson syndrome with severe mucosal involvement. Sci Rep 30:4862

    Google Scholar 

  • Ueta M, Tokunaga K, Sotozono C, Sawai H, Yoon KC, Kim MK, Seo KY, Joo CK, Tashiro K (2015) Kinoshita S (2015) HLA-A*02:06 and PTGER3 polymorphism exert additive effects in cold medicine-related Stevens-Johnson syndrome with severe ocular complications. Hum Genome Var 2:15023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Häcker H, Wagner H (2001) Endocytosed HSP60 s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339

    Article  CAS  PubMed  Google Scholar 

  • Vabulas RM, Ahmad- Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002a) Hsp70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  CAS  PubMed  Google Scholar 

  • Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H, Schild HA (2002b) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853

    Article  CAS  PubMed  Google Scholar 

  • Wadachi R, Hargreaves KM (2006) Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res 85(1):49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe H, Gaide O, Pétrilli V, Martinon F, Contassot E, Roques S, Kummer JA, Tschopp J, French LE (2007) Activation of IL-1β-processing inflammasome is involved in contact hypersensitivity. J Invest Dermatol 127:1956–1963

    Article  CAS  PubMed  Google Scholar 

  • Whitley RJ (2006) Herpes simplex encephalitis: adolescents and adults. Antiviral Res 71:141–148

    Article  CAS  PubMed  Google Scholar 

  • Willis CM, Young E, Brandon DR, Wilkinson JD (1986) Immunopathological and ultrastructural findings in human allergic and irritant contact dermatitis. Br J Dermatol 115:305–316

    Article  CAS  PubMed  Google Scholar 

  • Willis CM, Stephens CJM, Wilkinson JD (1989) Epidermal damage induced by irritants in man. A light and electron microscopy study. J Invest Dermatol 93:695–700

    Article  CAS  PubMed  Google Scholar 

  • Wilson SR, Thé L, Batia LM, Beattie K, Katibah GE, McClain SP, Pellegrino M, Estandian DM, Bautista DM (2013) The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Liu S, Yu N, Xiang L (2011) RNA released from necrotic keratinocytes upregulates intercellular adhesion molecule-1 expression in melanocytes. Arch Dermatol Res 303:771–776

    Article  CAS  PubMed  Google Scholar 

  • Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A, Picard C, Chapgier A, Plancoulaine S, Titeux M, Cognet C, von Bernuth H, Ku CL, Casrouge A, Zhang XX, Barreiro L, Leonard J, Hamilton C, Lebon P, Héron B, Vallée L, Quintana-Murci L, Hovnanian A, Rozenberg F, Vivier E, Geissmann F, Tardieu M, Abel L, Casanova JL (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317(5844):1522–1527

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risa Tamagawa-Mineoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tamagawa-Mineoka, R., Ueta, M., Katoh, N. (2016). TLR3 and Inflammatory Skin Diseases: From Environmental Factors to Molecular Opportunities. In: Wondrak, G. (eds) Skin Stress Response Pathways. Springer, Cham. https://doi.org/10.1007/978-3-319-43157-4_11

Download citation

Publish with us

Policies and ethics