Skip to main content

Treatable Metabolic Epilepsies

  • Chapter
  • First Online:
Clinical Child Neurology

Abstract

Certain inherited metabolic disorders presenting with epilepsy can be treated with disease-specific diet, vitamin, amino acid, or cofactor supplementations. In those disorders disease-specific therapy is successful to achieve good seizure control and improve long-term neurodevelopmental outcome. For this reason, intractable epilepsy with global developmental delay or history of developmental regression warrants detailed metabolic investigations for the possibility of an underlying treatable inherited metabolic disorder, which should be undertaken as first-line investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolf NI, Bast T, Surtees R. Epilepsy in inborn errors of metabolism. Epileptic Disord. 2005;7:67–81.

    PubMed  Google Scholar 

  2. Wolf NI, García-Cazorla A, Hoffmann GF. Epilepsy and inborn errors of metabolism in children. J Inherit Metab Dis. 2009;32:609–17.

    CAS  PubMed  Google Scholar 

  3. Rahman S, Footitt EJ, Varadkar S, Clayton PT. Inborn errors of metabolism causing epilepsy. Dev Med Child Neurol. 2013;55:23–36.

    PubMed  Google Scholar 

  4. Prasad AN, Hoffmann GF. Early onset epilepsy and inherited metabolic disorders: diagnosis and management. Can J Neurol Sci. 2010;37:350–8.

    PubMed  Google Scholar 

  5. Van Hove JL, Lohr NJ. Metabolic and monogenic causes of seizures in neonates and young infants. Mol Genet Metab. 2011;104:214–30.

    PubMed  Google Scholar 

  6. Mercimek-Mahmutoglu S, Patel J, Cordeiro D, et al. Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia. 2015;56:707–16.

    CAS  PubMed  Google Scholar 

  7. Chuang JL, Wynn RM, Moss CC, et al. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: a proposed mechanism for the thiamin-responsive phenotype. J Biol Chem. 2004;279:17792–800.

    CAS  PubMed  Google Scholar 

  8. Nellis MM, Kasinski A, Carlson M, et al. Relationship of causative genetic mutations in maple syrup urine disease with their clinical expression. Mol Genet Metab. 2003;80:189–95.

    CAS  PubMed  Google Scholar 

  9. Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington; 2013. p. 1993–2016.

    Google Scholar 

  10. Häberle J, Boddaert N, Burlina A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.

    PubMed  PubMed Central  Google Scholar 

  11. Ah Mew N, Lanpher BC, Gropman A, et al. Urea cycle disorders overview. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington; 2015. p. 1993–2016.

    Google Scholar 

  12. Burgard P, Kölker S, Haege G, Lindner M, Hoffmann GF. Neonatal mortality and outcome at the end of the first year of life in early onset urea cycle disorders – review and meta-analysis of observational studies published over more than 35 years. J Inherit Metab Dis. 2016;39:219–29.

    PubMed  Google Scholar 

  13. van der Crabben SN, Verhoeven-Duif NM, Brilstra EH, et al. An update on serine deficiency disorders. J Inherit Metab Dis. 2013;36:613–9.

    CAS  PubMed  Google Scholar 

  14. de Koning TJ, Klomp LW, van Oppen AC, et al. Prenatal and early postnatal treatment in 3-phosphoglycerate-dehydrogenase deficiency. Lancet. 2004;364:2221–2.

    PubMed  Google Scholar 

  15. Hart CE, Race V, Achouri Y, et al. Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am J Hum Genet. 2007;80:931–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Manoli I, Sloan JL, Venditti CP. Isolated Methylmalonic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington; 2016. p. 1993–2016.

    Google Scholar 

  17. Baumgartner MR, Hörster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.

    PubMed  PubMed Central  Google Scholar 

  18. Carrillo-Carrasco N, Venditti C. Propionic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington; 2012. p. 1993–2016.

    Google Scholar 

  19. Chapman KA, Summar ML. Propionic acidemia consensus conference summary. Mol Genet Metab. 2012;105:3–4.

    CAS  PubMed  Google Scholar 

  20. Wolf B. Biotinidase deficiency. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington; 2015. p. 1993–2016.

    Google Scholar 

  21. Baumgartner MR. Chapter 184 – vitamin-responsive disorders: cobalamin, folate, biotin, vitamins B1 and E. Handb Clin Neurol. 2013;113:1799–810.

    PubMed  Google Scholar 

  22. Burri BJ, Sweetman L, Nyhan WL. Mutant holocarboxylase synthetase: evidence for the enzyme defect in early infantile biotin-responsive multiple carboxylase deficiency. J Clin Invest. 1981;68:1491–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Carrillo-Carrasco N, Adams D, Venditti CP. Disorders of intracellular cobalamin metabolism. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington; 2013. p. 1993–2016.

    Google Scholar 

  24. Johnson JL, Duran M. Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver CR, Sly WS, Childs B, et al., editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill Professional; 2001. p. 3163–77.

    Google Scholar 

  25. Veldman A, Santamaria-Araujo JA, Sollazzo S, et al. Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics. 2010;125:e1249–54.

    PubMed  Google Scholar 

  26. Hitzert MM, Bos AF, Bergman KA, et al. Favorable outcome in a newborn with molybdenum cofactor type A deficiency treated with cPMP. Pediatrics. 2012;130:e1005–10.

    PubMed  Google Scholar 

  27. Mills PB, Struys E, Jakobs C, et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med. 2006;12:307–9.

    CAS  PubMed  Google Scholar 

  28. Stockler S, Plecko B, Gospe SM Jr, et al. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab. 2011;104:48–60.

    CAS  PubMed  Google Scholar 

  29. van Karnebeek CD, Hartmann H, Jaggumantri S, et al. Lysine restricted diet for pyridoxine-dependent epilepsy: first evidence and future trials. Mol Genet Metab. 2012;107:335–44.

    PubMed  Google Scholar 

  30. Mercimek-Mahmutoglu S, Cordeiro D, Cruz V, et al. Novel therapy for pyridoxine dependent epilepsy due to ALDH7A1 genetic defect: L-arginine supplementation alternative to lysine-restricted diet. Eur J Paediatr Neurol. 2014;18:741–6.

    PubMed  Google Scholar 

  31. Mills PB, Surtees RA, Champion MP, et al. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum Mol Genet. 2005;14:1077–86.

    CAS  PubMed  Google Scholar 

  32. Guerin A, Aziz AS, Mutch C, Lewis J, Go CY, Mercimek-Mahmutoglu S. Pyridox(am)ine-5-phosphate oxidase deficiency treatable cause of neonatal epileptic encephalopathy with burst suppression: case report and review of the literature. J Child Neurol. 2015;30:1218–25.

    PubMed  Google Scholar 

  33. De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325:703–9.

    PubMed  Google Scholar 

  34. Wang D, Pascual JM, De Vivo D. Glucose transporter type 1 deficiency syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington; 2012. p. 1993–2014.

    Google Scholar 

  35. Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25:275–81.

    PubMed  Google Scholar 

  36. Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13:342.

    PubMed  Google Scholar 

  37. Leen WG, Klepper J, Verbeek MM, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133:655–70.

    PubMed  Google Scholar 

  38. Suls A, Mullen SA, Weber YG, et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol. 2009;66:415–9.

    CAS  PubMed  Google Scholar 

  39. Mullen SA, Marini C, Suls A, et al. Glucose transporter 1 deficiency as a treatable cause of myoclonic astatic epilepsy. Arch Neurol. 2011;68:1152–5.

    PubMed  Google Scholar 

  40. Leen WG, Wevers RA, Kamsteeg EJ, Scheffer H, Verbeek MM, Willemsen MA. Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol. 2013;70:1440–4.

    PubMed  Google Scholar 

  41. Yang H, Wang D, Engelstad K, et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70:996–1005.

    CAS  PubMed  Google Scholar 

  42. Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia. 2012;53:1503–10.

    CAS  PubMed  Google Scholar 

  43. Pascual JM, Liu P, Mao D, et al. Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol. 2014;71:1255–65.

    PubMed  PubMed Central  Google Scholar 

  44. Mercimek-Mahmutoglu S, Stöckler-Ipsiroglu S, Salomons GS. Creatine deficiency syndromes. In: Pagon RA, Adam MP, Bird TD, et al., editors. GeneReviews™ [Internet]. Seattle: University of Washington; 2009. p. 1993–2013.

    Google Scholar 

  45. Stöckler S, Hanefeld F, Frahm J. Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet. 1996;348:789–90.

    PubMed  Google Scholar 

  46. Item CB, Stöckler-Ipsiroglu S, Stromberger C, et al. Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet. 2001;69:1127–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Salomons GS, van Dooren SJ, Verhoeven NM, et al. X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet. 2001;68:1497–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stöckler-Ipsiroglu S, van Karnebeek C, Longo N, et al. Guanidinoacetate methyltransferase (GAMT) deficiency: outcome in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab. 2014;111:16–25.

    PubMed  Google Scholar 

  49. Van de Kamp JM, Betsalel OT, Mercimek-Mahmutoglu S, et al. Phenotype and genotype in 101 males with X-linked creatine transporter deficiency. J Med Genet. 2013;50:463–72.

    PubMed  Google Scholar 

  50. Stockler-Ipsiroglu S, Apatean D, Battini R, et al. Arginine:glycine amidinotransferase (GATM) deficiency: clinical features and long term outcomes in 16 patients diagnosed worldwide. Mol Genet Metab. 2015;116:252–9.

    CAS  PubMed  Google Scholar 

  51. Valayannopoulos V, Boddaert N, Chabli A, et al. Treatment by oral creatine, L-arginine and L-glycine in six severely affected patients with creatine transporter defect. J Inherit Metab Dis. 2012;35:151–7.

    CAS  PubMed  Google Scholar 

  52. Mercimek-Mahmutoglu S, Connolly MB, Poskitt KJ, et al. Treatment of intractable epilepsy in a female with SLC6A8 deficiency. Mol Genet Metab. 2010;101:409–12.

    CAS  PubMed  Google Scholar 

  53. Viau KS, Ernst SL, Pasquali M, Botto LD, Hedlund G, Longo N. Evidence-based treatment of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet Metab. 2013;110:255–62.

    CAS  PubMed  Google Scholar 

  54. El-Gharbawy AH, Goldstein JL, Millington DS, et al. Elevation of guanidinoacetate in newborn dried blood spots and impact of early treatment in GAMT deficiency. Mol Genet Metab. 2013;109:215–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadet Mercimek-Andrews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruun, T., Mercimek-Andrews, S. (2020). Treatable Metabolic Epilepsies. In: Salih, M.A. (eds) Clinical Child Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-43153-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43153-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43152-9

  • Online ISBN: 978-3-319-43153-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics