Skip to main content

Many-objective Optimization Using Evolutionary Algorithms: A Survey

  • Chapter
  • First Online:
Recent Advances in Evolutionary Multi-objective Optimization

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 20))

Abstract

Multi-objective Evolutionary Algorithms (MOEAs) have proven their effectiveness and efficiency in solving complex problems with two or three objectives. However, recent studies have shown that the performance of the classical MOEAs is deteriorated when tackling problems involving a larger number of conflicting objectives. Since most individuals become non-dominated with respect to each others, the MOEAs’ behavior becomes similar to a random walk in the search space. Motivated by the fact that a wide range of real world applications involves the optimization of more than three objectives, several Many-objective Evolutionary Algorithms (MaOEAs) have been proposed in the literature. In this chapter, we highlight in the introduction the difficulties encountered by MOEAs when handling Many-objective Optimization Problems (MaOPs). Moreover, a classification of the most prominent MaOEAs is provided in an attempt to review and describe the evolution of the field. In addition, a summary of the most commonly used test problems, statistical tests, and performance indicators is presented. Finally, we outline some possible future research directions in this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bechikh, S., Chaabani, A., Said, L.B.: An efficient chemical reaction optimization algorithm for multiobjective optimization. IEEE Trans. Cybern. 45(10), 2051–2064 (2015)

    Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. Zitzler, E., Laumanns, M., Thiele, L., Zitzler, E., Zitzler, E., Thiele, L., Thiele, L.: Spea 2: Improving the strength pareto evolutionary algorithm (2001)

    Google Scholar 

  4. Sülflow, A., Drechsler, N., Drechsler, R.: Robust multi-objective optimization in high dimensional spaces. In: Evolutionary Multi-criterion Optimization, pp. 715–726. Springer, Heidelberg (2007)

    Google Scholar 

  5. Kasprzyk, J.R., Reed, P.M., Kirsch, B.R., Characklis, G.W.: Managing population and drought risks using many-objective water portfolio planning under uncertainty. Water Resour. Res. 45(12) (2009)

    Google Scholar 

  6. Garza-Fabre, M., Pulido, G. Coello, C.A.C.: Ranking methods for many-objective optimization. In: MICAI 2009: Advances in Artificial Intelligence, pp. 633–645. Springer, Heidelberg (2009)

    Google Scholar 

  7. Jaimes, A.L.: TĂ©cnicas para resolver problemas de optimizaciĂłn con muchas funciones objetivo usando algoritmos evolutivos. Ph.D. thesis (2011)

    Google Scholar 

  8. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and its impact on the performance of moeas. In: Evolutionary Multi-criterion Optimization, pp. 5–20. Springer, Heidelberg (2007)

    Google Scholar 

  9. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms-a comparative case study. In: Parallel Problem Solving from Nature-PPSN V, pp. 292–301. Springer, Heidelberg (1998)

    Google Scholar 

  10. Farina, M., Amato, P.: On the optimal solution definition for many-criteria optimization problems. In: Proceedings of the NAFIPS-FLINT International Conference, pp. 233–238 (2002)

    Google Scholar 

  11. Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms. In: Soft Computing in Engineering Design and Manufacturing, pp. 231–240. Springer, Heidelberg (1998)

    Google Scholar 

  12. Li, M., Zheng, J., Li, K., Yuan, Q., Shen, R.: Enhancing diversity for average ranking method in evolutionary many-objective optimization. In: Parallel Problem Solving from Nature, PPSN XI, pp. 647–656. Springer, Heidelberg (2010)

    Google Scholar 

  13. Corne, D.W., Knowles, J.D.: Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 773–780. ACM, New York (2007)

    Google Scholar 

  14. Drechsler, N., Drechsler, R., Becker, B.: Multi-objective optimisation based on relation favour. In: Evolutionary Multi-criterion Optimization, pp. 154–166. Springer, Heidelberg (2001)

    Google Scholar 

  15. Drechsler, N., Drechsler, R., Becker, B.: Multi-objective optimization in evolutionary algorithms using satisfiability classes. In: Computational Intelligence, pp. 108–117. Springer, Heidelberg (1999)

    Google Scholar 

  16. Di Pierro, F., Khu, S.-T., Savic, D.A.: An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans. Evolut. Comput. 11(1), 17–45 (2007)

    Article  Google Scholar 

  17. Das, I.: A preference ordering among various pareto optimal alternatives. Struct. Optim. 18(1), 30–35 (1999)

    Article  Google Scholar 

  18. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of the art of nurse rostering. J. Sched. 7(6), 441–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deb, K., Saxena, D.: Searching for pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems In: Proceedings of the World Congress on Computational Intelligence (WCCI-2006), pp. 3352–3360 (2006)

    Google Scholar 

  20. Singh, H.K., Isaacs, A., Ray, T.: A pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Trans. Evolut. Comput. 15(4), 539–556 (2011)

    Article  Google Scholar 

  21. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC’02, vol. 1, pp. 825–830. IEEE, New York (2002)

    Google Scholar 

  22. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evolut. Comput. 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  23. Jaimes, A.L, Coello, C.A.C., Chakraborty, D.: Objective reduction using a feature selection technique. In: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 673–680. ACM, New York (2008)

    Google Scholar 

  24. Mitra, P., Murthy, C., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002)

    Article  Google Scholar 

  25. Brockhoff, D., Saxena, D.K., Deb, K., Zitzler, E.: On handling a large number of objectives a posteriori and during optimization. In: Multiobjective Problem Solving from Nature, pp. 377–403. Springer, Heidelberg (2008)

    Google Scholar 

  26. Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evolut. Comput. 17(1), 77–99 (2013)

    Article  Google Scholar 

  27. Brockhoff, D., Zitzler, E.: Are all objectives necessary? on dimensionality reduction in evolutionary multiobjective optimization. In: Parallel Problem Solving from Nature-PPSN IX, pp. 533–542. Springer, Heidelberg (2006)

    Google Scholar 

  28. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 48(1), 13 (2015)

    Article  Google Scholar 

  29. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2, 273–286 (2006)

    Article  MathSciNet  Google Scholar 

  30. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference-based evolutionary algorithm for multi-objective optimization. Evolut. Comput. 17(3), 411–436 (2009)

    Article  Google Scholar 

  31. Said, L.B, Bechikh, S., Ghédira, K.: The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans. Evolut. Comput., 14(5), 801–818 (2010)

    Google Scholar 

  32. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evolut. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  33. Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans. Evolut. Comput. 17(4), 474–494 (2013)

    Article  Google Scholar 

  34. Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Chapter four-preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-art. Adv. Comput. 98, 141–207 (2015)

    Article  Google Scholar 

  35. Bechikh, S.: Incorporating decision maker’s preference information in evolutionary multi-objective optimization. Ph.D. thesis, University of Tunis, ISG-Tunis, Tunisia (2013)

    Google Scholar 

  36. Bechikh, S., Said, L.B., Ghédira, K.: Negotiating decision makers’ reference points for group preference-based evolutionary multi-objective optimization. In: 2011 11th International Conference on Hybrid Intelligent Systems (HIS), pp. 377–382. IEEE, New York (2011)

    Google Scholar 

  37. Bechikh, S., Said, L.B., Ghédira, K.: Group preference based evolutionary multi-objective optimization with nonequally important decision makers: Application to the portfolio selection problem. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 5(278–288), 71 (2013)

    Google Scholar 

  38. Kalboussi, S., Bechikh, S., Kessentini, M., Said, L.B.: Preference-based many-objective evolutionary testing generates harder test cases for autonomous agents. In: Search Based Software Engineering, pp. 245–250. Springer, Heidelberg (2013)

    Google Scholar 

  39. Dunwei, G., Gengxing, W., Xiaoyan, S.: Set-based genetic algorithms for solving many-objective optimization problems. In: 2013 13th UK Workshop on Computational Intelligence (UKCI), pp. 96–103 (2013)

    Google Scholar 

  40. Deb, K., Kumar, A.: Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 781–788. ACM, New York (2007)

    Google Scholar 

  41. Wang, R., Purshouse, R.C., Fleming, P.J.: On finding well-spread pareto optimal solutions by preference-inspired co-evolutionary algorithm. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 695–702. ACM, New York (2013)

    Google Scholar 

  42. Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired co-evolutionary algorithm using weights for many-objective optimization. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 101–102. ACM, New York (2013)

    Google Scholar 

  43. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Parallel Problem Solving from Nature-PPSN VIII, pp. 832–842. Springer, Heidelberg (2004)

    Google Scholar 

  44. Basseur, M., Burke, E.K.: Indicator-based multi-objective local search. In: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pp. 3100–3107. IEEE, New York (2007)

    Google Scholar 

  45. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Evolutionary Multi-criterion Optimization, pp. 742–756. Springer, Heidelberg (2007)

    Google Scholar 

  46. Emmerich, M., Beume, N., Naujoks, B.: An emo algorithm using the hypervolume measure as selection criterion. In: Evolutionary Multi-Criterion Optimization, pp. 62–76. Springer, Heidelberg (2005)

    Google Scholar 

  47. Wagner, M., Neumann, F.: A fast approximation-guided evolutionary multi-objective algorithm. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 687–694. ACM, New York (2013)

    Google Scholar 

  48. Bringmann, K., Friedrich, T., Neumann, F., Wagner, M.: Approximation-guided evolutionary multi-objective optimization. IJCAI Proc. Int. Joint Conf. Artif. Intell. 22, 1198–1203 (2011)

    Google Scholar 

  49. Gomez, R.H., Coello, C.C.: Mombi: A new metaheuristic for many-objective optimization based on the r2 indicator. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2488–2495. IEEE, New York (2013)

    Google Scholar 

  50. Zhang, Q., Li, H.: Moea/d: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evolut. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  51. Azzouz, N., Bechikh, S., Said, L.B.: Steady state ibea assisted by mlp neural networks for expensive multi-objective optimization problems. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 581–588. ACM, New York (2014)

    Google Scholar 

  52. Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-objective optimization. Evolut. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  53. Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using monte carlo sampling. In: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 313–326. Springer, Heidelberg (2010)

    Google Scholar 

  54. Diaz-Manriquez, A., Toscano-Pulido, G., Coello, C.A.C., Landa-Becerra, R.: A ranking method based on the r2 indicator for many-objective optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1523–1530. IEEE, New York (2013)

    Google Scholar 

  55. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 28(3), 392–403 (1998)

    Article  Google Scholar 

  56. Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment. IEEE Trans. Evolut. Comput. 6(4), 402–412 (2002)

    Article  Google Scholar 

  57. Miettinen, K.: Nonlinear Multiobjective Optimization, International Series in Operations Research and Management Science, vol. 12 (1999)

    Google Scholar 

  58. Dennis, J., Das, I.: Normal-boundary intersection: a new method for generating pareto optimal points in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  59. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: The normalized normal constraint method for generating the pareto frontier. Struct. Multidiscip. Optim. 25(2), 86–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ishibuchi, H., Akedo, N., Nojima, Y.: Relation between neighborhood size and moea/d performance on many-objective problems. In: Evolutionary Multi-Criterion Optimization, pp. 459–474. Springer, Heidelberg (2013)

    Google Scholar 

  61. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans. Evolut. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  62. Seada, H., Deb, K.: U-nsga-iii: A unified evolutionary algorithm for single, multiple, and many-objective optimization, COIN report, no. 2014022

    Google Scholar 

  63. Asafuddoula, M., Ray, T., Sarker, R.: A decomposition based evolutionary algorithm for many objective optimization with systematic sampling and adaptive epsilon control. In: Evolutionary Multi-Criterion Optimization, pp. 413–427. Springer, Heidelberg (2013)

    Google Scholar 

  64. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. IEEE Trans. Evolut. Comput. 18(4), 602–622 (2014)

    Article  Google Scholar 

  65. Ray, T., Tai, K., Seow, C.: An evolutionary algorithm for multiobjective optimization. Eng. Optim. 33(3), 399–424 (2001)

    Article  Google Scholar 

  66. Hadka, D., Reed, P.M., Simpson, T.W.: Diagnostic assessment of the borg moea for many-objective product family design problems. In: 2012 IEEE congress on Evolutionary computation (CEC), pp. 1–10. IEEE, New York (2012)

    Google Scholar 

  67. Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evolut. Comput. 19(3), 445–460 (2015)

    Article  Google Scholar 

  68. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization. OR spectrum 24(2), 193–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  69. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evolut. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  70. Zhang, Q., Liu, W., Li, H.: The performance of a new version of moea/d on cec09 unconstrained mop test instances. IEEE Congr. Evolut. Comput. 1, 203–208 (2009)

    MathSciNet  Google Scholar 

  71. Tan, Y.-Y., Jiao, Y.-C., Li, H., Wang, X.-K.: Moea/d+ uniform design: a new version of moea/d for optimization problems with many objectives. Comput. Oper. Res. 40(6), 1648–1660 (2013)

    Article  MathSciNet  Google Scholar 

  72. Yuan, Y., Xu, H., Wang, B.: An improved nsga-iii procedure for evolutionary many-objective optimization. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 661–668. ACM, New York (2014)

    Google Scholar 

  73. Elarbi, M., Bechikh, S., Said, L.B.: Solving many-objective problems using targeted search directions. In: Proceedings of the 31th Annual ACM Symposium on Applied Computing, pp.89–96. ACM, Pisa, Italy (2016)

    Google Scholar 

  74. Derbel, B., Brockhoff, D., Liefooghe, A., Verel, S..: On the impact of multiobjective scalarizing functions. In: Parallel Problem Solving from Nature–PPSN XIII, pp. 548–558. Springer, Heidelberg (2014)

    Google Scholar 

  75. Hughes, E.J.: Msops-ii: A general-purpose many-objective optimiser. In: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pp. 3944–3951. IEEE, New York (2007)

    Google Scholar 

  76. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  77. Brockhoff, D., Zitzler, E.: Offline and online objective reduction in evolutionary multiobjective optimization based on objective conflicts. TIK Report 269 (2007)

    Google Scholar 

  78. Miettinen, K.: Graphical illustration of pareto optimal solutions. In: Multi-objective Programming and Goal Programming, pp. 197–202. Springer, Heidelberg (2003)

    Google Scholar 

  79. Thiele, L., Chakraborty, S., Gries, M., Kunzli, S.: Design space exploration of network processor. Netw. Process. Des. Issues Pract. 1, 55–89 (2002)

    Google Scholar 

  80. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. IEEE Trans. Evolut. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  81. Villalobos, C.A.R., Coello, C.A.C.: A new multi-objective evolutionary algorithm based on a performance assessment indicator. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 505–512. ACM, New York (2012)

    Google Scholar 

  82. Van Veldhuizen, D.A., Lamont, G.B.: On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 Congress on Evolutionary Computation, 2000, vol. 1, pp. 204–211. IEEE, New York (2000)

    Google Scholar 

  83. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, New Jersey (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slim Bechikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bechikh, S., Elarbi, M., Ben Said, L. (2017). Many-objective Optimization Using Evolutionary Algorithms: A Survey. In: Bechikh, S., Datta, R., Gupta, A. (eds) Recent Advances in Evolutionary Multi-objective Optimization. Adaptation, Learning, and Optimization, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-42978-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42978-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42977-9

  • Online ISBN: 978-3-319-42978-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics