Skip to main content

3-D Volume of Interest Based Image Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9810))

Abstract

This paper proposes a number of techniques for 3-D image classification according to the nature of a particular Volume of Interest (VOI) that appears across a given image set. Three VOI Based Image Classification (VOIBIC) approaches are considered: (i) Statistical metric based, (ii) Point series based and (iii) Tree based. For evaluation purpose, two 3-D MRI brain scan datasets, Epilepsy and Musicians, were used; the aim being to distinguish between: (i) epilepsy patients versus healthy people and (ii) musicians versus non-musicians. The paper also considers augmenting the VOI data with meta data. According to the reported experimental results the Point series based approach, augmented with meta data, is the most effective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. http://meshlab.sourceforge.net/

  2. Bellman, R., Kalaba, R.: On adaptive control processes. IRE Trans. Autom. Control 4(2) (1959)

    Google Scholar 

  3. Cocosco, C.A., Zijdenbos, A.P., Evans, A.C.: Automatic generation of training data for brain tissue classification from MRI. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 516–523. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Cocosco, C., Zijdenbos, A., Evans, A.: A fully automatic and robust brain MRI tissue classification method. Med. Image Anal. 7(4), 513–527 (2003)

    Article  Google Scholar 

  5. Costa, L.D.F., Cesar Jr., R.M.: Shape Analysis and Classification: Theory and Practice. CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Elsayed, A.: Region of interest-based image classification. Ph.D. dissertation, Department of Computer Science, University of Liverpool, November 2011

    Google Scholar 

  8. Elsayed, A., Coenen, F., García-Fiñana, M., Sluming, V.: Region of interest based image categorization. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 239–250. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Elsayed, A., Coenen, F., Jiang, C., García-Fiñana, M., Sluming, V.: Corpus callosum MR image classification. Knowl.-Based Syst. 23(4), 330–336 (2010)

    Article  Google Scholar 

  10. Friedman, M.: A comparison of alternative tests of significance for the problem of M rankings. Ann. Math. Stat. 11(1), 86–92 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galloway, M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975)

    Article  Google Scholar 

  12. Gao, D.: Volume texture extraction for 3D seismic visualization and interpretation. Geophysics 68(4), 1294–1302 (2003)

    Article  Google Scholar 

  13. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2006)

    Google Scholar 

  14. Hough, P.V.C.: Method and means for recognizing complex patterns. US Patent (1962)

    Google Scholar 

  15. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the presence of isomorphism. In: Proceedings of the Third IEEE International Conference on Data Mining, pp. 549–552. IEEE Computer Society (2003)

    Google Scholar 

  16. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Jackins, C.L., Tanimoto, S.L.: Oct-trees and their use in representing three-dimensional objects. Comput. Graph. Image Process. 14(3), 249–270 (1980)

    Article  Google Scholar 

  18. Jiang, C., Coenen, F.: Graph-based image classification by weighting scheme. In: Allen, T., Ellis, R., Petridis, M. (eds.) Applications and Innovations in Intelligent System XVI, pp. 63–76. Springer, London (2009)

    Chapter  Google Scholar 

  19. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software defect prediction: a proposed framework and novel findings. IEEE Trans. Software Eng. 34(4), 485–496 (2008)

    Article  Google Scholar 

  20. Lin, J., Mula, M., Hermann, B.: Uncovering the neurobehavioural comorbidities of epilepsy over the lifespan. Lancet 380(9848), 1180–1192 (2012)

    Article  Google Scholar 

  21. Long, S., Holder, L.B.: Graph-based shape analysis for MRI classification. Int. J. Knowl. Discovery Bioinform. 2(2), 19–33 (2011)

    Article  Google Scholar 

  22. Rajini, N., Bhavani, R.: Classification of MRI brain images using K-nearest neighbor and artificial neural network. In: 2011 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 563–568. IEEE (2011)

    Google Scholar 

  23. Rambally, G., Rambally, R.S.: Octrees and their applications in image processing. In: Southeastcon 1990, Proceedings, pp. 1116–1120. IEEE (1990)

    Google Scholar 

  24. Shattuck, D., Sandor-Leahy, S., Schaper, K., Rottenberg, D., Leahy, R.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5), 856–876 (2001)

    Article  Google Scholar 

  25. Tang, X.: Texture information in run-length matrices. IEEE Trans. Image Process. 7(11), 1602–1609 (1998)

    Article  Google Scholar 

  26. Udomchaiporn, A., Coenen, F., García-Fiñana, M., Sluming, V.: 3-D MRI brain scan feature classification using an oct-tree representation. Adv. Data Min. Appl. 8346, 229–240 (2013)

    Article  Google Scholar 

  27. Udomchaiporn, A., Coenen, F., García-Fiñana, M., Sluming, V.: 3-D MRI brain scan classification using a point series based representation. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 300–307. Springer, Heidelberg (2014)

    Google Scholar 

  28. Yan, X.: gSpan: graph-based substructure pattern mining. In: Proceeding of the IEEE International Conference on Data Mining, pp. 721–724. IEEE Computer Society (2002)

    Google Scholar 

  29. Zhang, Y., Dong, Z., Wu, L., Wang, S.: A hybrid method for MRI brain image classification. Expert Syst. Appl. 38(8), 10049–10053 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akadej Udomchaiporn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Udomchaiporn, A., Coenen, F., García-Fiñana, M., Sluming, V. (2016). 3-D Volume of Interest Based Image Classification. In: Booth, R., Zhang, ML. (eds) PRICAI 2016: Trends in Artificial Intelligence. PRICAI 2016. Lecture Notes in Computer Science(), vol 9810. Springer, Cham. https://doi.org/10.1007/978-3-319-42911-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42911-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42910-6

  • Online ISBN: 978-3-319-42911-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics