Skip to main content

Precipitation Technologies for Nanoparticle Production

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 22))

Abstract

Precipitation technologies have been widely studied for nanoparticle production because they provide more control over particle size, shape, and morphology as compared to mechanical processes, such as milling and homogenization. Several precipitation processes are discussed in this chapter, with special attention to experimental parameters and typical particle attributes. The chapter also touches on novel nanoparticle recovery techniques that may be coupled with precipitation processes to enable these precipitation technologies to be scaled for commercial applications. The current authors would like to thank and acknowledge the significant contribution of the previous authors of this chapter from the first edition. This current second edition chapter is a revision and update of the original authors’ work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    CREMPHOR EL is a registered trademark of BASF Corporation.

  2. 2.

    TAXOL (paclitaxel) is a registered trademark of Bristol-Myers Squibb Company.

  3. 3.

    SPORANOX IV is a registered trademark of Janssen Pharmaceutical Products, LP.

References

  • Albano AA, Phuapradit W, Sandhu HK, Shah NH (2002) Stable complexes of poorly soluble compounds in ionic polymers, US 6,350,786

    Google Scholar 

  • Bakhbakhi Y, Rohani S, Charpentier PA (2005) Micronization of phenanthrene using the gas antisolvent process: Part 2. Theoretical study. Ind Eng Chem Res 44(19):7345–7351

    Article  CAS  Google Scholar 

  • Baldyga J, Czarnocki R, Shefeunov BY, Smith KB (2010) Particle formation in supercritical fluids—scale-up problem. Chem Eng Res Des 88:331–341

    Article  CAS  Google Scholar 

  • Blankschtein D, Thurston GM, Benedek GB (1986) Phenomenological theory of equilibrium thermodynamic properties and phase separation of micellar solutions. J Chem Phys 85(12):7268–7288

    Article  CAS  Google Scholar 

  • Bosselmann S, Nagao M, Chow KT, Williams RO III (2012) Influence of formulation and processing variables on properties of itraconazole nanoparticles made by advanced evaporative precipitation into aqueous solution. AAPS PharmSciTech 13(3):949–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bristow S, Shekunov T, Shekunov BY, York P (2001) Analysis of the supersaturation and precipitation process with supercritical CO2. J Supercrit Fluids 21(3):257–271

    Article  CAS  Google Scholar 

  • Bustami R, Chan H-K, Dehghani F, Foster N (2000) In: International symposium on supercritical fluids, Generation of protein microparticles using high pressure modified carbon dioxide, Atlanta, GA

    Google Scholar 

  • Carl LY (1999) Chemical properties handbook. McGraw-Hill, New York

    Google Scholar 

  • Chan H-K, Chew NYK (2003) Novel alternative methods for the delivery of drugs for the treatment of asthma. Adv Drug Deliv Rev 55(7):793–805

    Article  CAS  PubMed  Google Scholar 

  • Chang SA, Gray DG (1978) The surface tension of aqueous hydroxypropyl cellulose solutions. J Colloid Interface Sci 67:255–265

    Article  CAS  Google Scholar 

  • Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AHL, Baum L (2013) Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 15(2):324–336

    Google Scholar 

  • Charoenchaitrakool M, Dehghani F, Foster NR, Chan HK (2000) Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind Eng Chem Res 39(12):4794–4802

    Article  CAS  Google Scholar 

  • Chattopadhyay P, Gupta RB (2001a) Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. Int J Pharm 228(1–2):19–31

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay P, Gupta RB (2001b) Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer. Ind Eng Chem Res 40(16):3530–3539

    Article  CAS  Google Scholar 

  • Chattopadhyay P, Gupta RB (2002) Protein nanoparticles formation by supercritical antisolvent with enhanced mass transfer. AICHE J 48(2):235–244

    Article  CAS  Google Scholar 

  • Chen X, Young TJ, Sarkari M, Williams RO, Johnston KP (2002) Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm 242(1–2):3–14

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Vaughn JM, Yacaman MJ, Williams RO, Johnston KP III (2004a) Rapid dissolution of high-potency danazol particles produced by evaporative precipitation into aqueous solution. J Pharm Sci 93(7):1867–1878

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Ill Benhayoune Z, Williams RO, Johnston KP (2004b) Rapid dissolution of high potency itraconazole particles produced by evaporative precipitation into aqueous solution. J Drug Deliv Sci Technol 14(4):299–304

    Article  CAS  Google Scholar 

  • Chen X, Lo CY-L, Sarkari M, Williams RO, Johnston KP III (2006) Ketoprofen nanoparticle gels formed by evaporative precipitation into aqueous solution. AICHE J 52(7):2428–2435

    Article  CAS  Google Scholar 

  • Chen XX, Matteucci ME, Lo CY, Johnston KP, Williams RO (2009) Flocculation of polymer stabilized nanocrystal suspensions to produce redispersible powders. Drug Dev Ind Pharm 35(3):283–296

    Article  CAS  PubMed  Google Scholar 

  • Chiou H, Chan H-K, Heng D, Prud’homme RK, Raper JA (2008a) A novel production method for inhalable cyclosporine A powders by confined liquid impinging jet precipitation. J Aerosol Sci 39(6):500–509

    Article  CAS  Google Scholar 

  • Chiou H, Chan H-K, Prud’homme RK, Raper JA (2008b) Evaluation on the use of confined liquid impinging jets for the synthesis of nanodrug particles. Drug Dev Ind Pharm 34(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Chow HF, Sun CC, Chow AHL (2014) Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production. Eur J Pharm Biopharm 88(2):462–471

    Article  CAS  PubMed  Google Scholar 

  • Chow SF, Wan KY, Cheng KK, Wong KW, Sun CC, Baum L, Chow AHL (2015) Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization. Eur J Pharm Biopharm 94:436–444

    Article  CAS  PubMed  Google Scholar 

  • Crison JR (2000) Biopharmaceutical aspects of water-insoluble drugs for oral drug delivery. In: LIU R (ed) Water-insoluble drug formulation. CRC Press, Boca Raton

    Google Scholar 

  • Daniels R, Barta A (1994) Pharmacopoeial cellulose ethers as oil-in-water emulsifiers I: Interfacial properties. Eur J Pharm Biopharm 40:128–133

    CAS  Google Scholar 

  • de la Fuente Badilla JC, Peters CJ, de Swaan AJ (2000) Volume expansion in relation to the gas-antisolvent process. J Supercrit Fluids 17(1):13–23

    Article  Google Scholar 

  • de la Fuente JC, Shariati A, Peters CJ (2004) On the selection of optimum thermodynamic conditions for the GAS process. J Supercrit Fluids 32(1–3):55–61

    Article  CAS  Google Scholar 

  • Dearn AR (1994) Atovaquone pharmaceutical compositions. WO 9414426, 23 Dec 1993

    Google Scholar 

  • Debenedetti PG (1990) Homogeneous nucleation in supercritical fluids. AICHE J 36(9):1289–1298

    Article  CAS  Google Scholar 

  • Debenedetti PG, Tom JW, Kwauk X, Yeo SD (1993) Rapid expansion of supercritical solutions (RESS): fundamentals and applications. Fluid Phase Equilibr 82:311–321

    Article  CAS  Google Scholar 

  • Desai D, Diodone R, Go Z, Ibrahim PN, Iyer R, Mair HJ, Sandhu HK, Shah NH, Visor G, Wyttenbach N, Lauper S, Pudewell J, Wierschem F (2010) Compositions and uses thereof. US20100310659 A1 (03.31.2010)

    Google Scholar 

  • Dodds S, Wood JA, Charpentier PA (2007) Modeling of the gas-antisolvent (GAS) process for crystallization of beclomethasone dipropionate using carbon dioxide. Ind Eng Chem Res 46:8009–8017

    Article  CAS  Google Scholar 

  • Domingo C, Berends E, van Rosmalen GM (1997) Precipitation of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle. J Supercrit Fluids 10(1):39–55

    Article  CAS  Google Scholar 

  • Dong Y, Ng WK, Shen S, Kim S, Tan RBH (2009) Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation. Int J Pharm 375(1–2):84–88

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Ng WK, Hu J, Shen S, Tan RBH (2010) A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs. Int J Pharm 386(1–2):256–261

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Ng WK, Shen S, Kim S, Tan RH (2011) Controlled antisolvent precipitation of spironolactone nanoparticles by impingement mixing. Int J Pharm 410(1–2):175–179

    Article  CAS  PubMed  Google Scholar 

  • Elvassore N, Parton T, Bertucco A, Di Noto V (2003) Kinetics of particle formation in the gas antisolvent precipitation process. AICHE J 49(4):859–868

    Article  CAS  Google Scholar 

  • Elvassore N, Cozzi F, Bertucco A (2004) Mass transport modeling in a gas antisolvent process. Ind Eng Chem Res 43(16):4935–4943

    Article  CAS  Google Scholar 

  • Engstrom JD, Simpson DT, Cloonan C, Lai ES, Williams RO III, Kitto GB, Johnston KP (2007) Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen. Eur J Pharm Biopharm 65(2):163–174

    Article  CAS  PubMed  Google Scholar 

  • Engstrom JD, Lai ES, Ludher B, Chen B, Milner TE, Kitto GB, Williams RO III, Johnston KP (2008) Formation of stable submicron protein particles by thin film freezing. Pharm Res 25(6):1334–1336

    Article  CAS  PubMed  Google Scholar 

  • Erriguible A, Laugier S, Laté M, Subra-Paternault P (2013) Effect of pressure and non-isothermal injection on re-crystallization by CO2 antisolvent: solubility measurements, simulation of mixing and experiments. J Supercrit Fluids 76:115–125

    Article  CAS  Google Scholar 

  • Erriguible A, Neurohr C, Revelli AL, Laugier S, Fevotte G, Subra-Paternault P (2015) Cocrystallization induced by compressed CO2 as antisolvent: simulation of a batch process for the estimation of nucleation and growth parameters. J Supercrit Fluids 98:194–203

    Article  CAS  Google Scholar 

  • Esfandiari N, Ghoreishi SM (2013a) Synthesis of 5-fluorouracil nanoparticles via supercritical gas antisolvent process. J Supercrit Fluids 84:205–210

    Article  CAS  Google Scholar 

  • Esfandiari N, Ghoreishi SM (2013b) Kinetics modeling of ampicillin nanoparticles synthesis via supercritical gas antisolvent process of supercritical fluids. Chem Eng Technol 81:119–127

    CAS  Google Scholar 

  • European Medicines Agency (2012) Zelboraf. Assessment report

    Google Scholar 

  • Falk R, Randolph TW, Meyer JD, Kelly RM, Manning MC (1997) Controlled release of ionic compounds from poly(l-lactide) microspheres produced by precipitation with a compressed antisolvent. J Control Release 44(1):77–85

    Article  CAS  Google Scholar 

  • Franklin RK, Edwards JR, Chernyak Y, Gould RD, Henon F, Carbonell RG (2001) Formation of perfluoropolyether coatings by the rapid expansion of supercritical solutions (RESS) process. Part 2: Numerical modeling. Ind Eng Chem Res 40(26):6127–6139

    Article  CAS  Google Scholar 

  • Fusaro F, Mazzotti M, Muhrer G (2004) Gas antisolvent recrystallization of paracetamol from acetone using compressed carbon dioxide as antisolvent. Cryst Growth Des 4(5):881–889

    Article  CAS  Google Scholar 

  • Fusaro F, Haenchen M, Mazzotti M, Muhrer G, Subramaniam B (2005) Dense gas antisolvent precipitation: a comparative investigation of the GAS and PCA techniques. Ind Eng Chem Res 44(5):1502–1509

    Article  CAS  Google Scholar 

  • Gardner CR, Walsh CT, Almarsson O (2004) Drugs as materials: valuing physical form in drug discovery. Nat Rev Drug Discov 3(11):926–934

    Article  CAS  PubMed  Google Scholar 

  • Gassmann P, List M, Schweitzer A, Sucker H (1994) Hydrosols—alternatives for the parenteral application of poorly water-soluble drugs. Eur J Pharm Biopharm 40(2):64–72

    CAS  Google Scholar 

  • Gao L, Liu G, Wang X, Liu F, Xu Y, Ma J (2011) Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int J Pharm 404(1–2):231–237

    Article  CAS  PubMed  Google Scholar 

  • Gupta RB (2006) Nanoparticle technology for drug delivery, vol 53, 1st edn. Taylor & Francis, New York, pp 53–84

    Book  Google Scholar 

  • Hanna M, York P (1998) Method + apparatus for the formation of particles. WO 9836825, February 20

    Google Scholar 

  • Han J, Zhu Z, Qian H, Wohl AR, Beaman CJ, Hoye TR, Macosko CW (2012) A simple confined impingement jets mixer for flash nanoprecipitation. J Pharm Sci 101(10):4018–4023

    Article  CAS  PubMed  Google Scholar 

  • Heimenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Marcel Dekker, New York

    Book  Google Scholar 

  • Helfgen B, Turk M, Schaber K (2003) Hydrodynamic and aerosol modelling of the rapid expansion of supercritical solutions (RESS-process). J Supercrit Fluids 26(3):225–242

    Article  CAS  Google Scholar 

  • Hiendrawan S, Veriansyah B, Tjandrawinata RR (2014) Micronization of fenofibrate by rapid expansion of supercritical solution. J Ind Eng Chem 20(1):54–60

    Article  CAS  Google Scholar 

  • Hitt JE, Tucker CJ, Evans JC, Curtis CA, Svenson S (2003) Process to precipitate drug particles. US 20030049323, 08/27/2002

    Google Scholar 

  • Hitt JE, Rogers TL, Gillespie IB, Scherzer BD, Garcia PC, Beck NS, Tucker CJ, Young TJ, Hayes DA, Williams RO III, Johnston KP, McConville JT, Peters JI, Talbert R, Burgess D (2006) Enhanced delivery of pharmaceutical compositions to treat life threatening infections. WO 2006026502, 08/26/2005

    Google Scholar 

  • Hu J, Johnston KP, Williams RO III (2004) Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm 30(3):233–245

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Ng W-K, Dong Y-C, Shen S-C, Tan RBH (2011) Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Int J Pharm 404(1–2):198–204

    Article  CAS  PubMed  Google Scholar 

  • Jacobs C, Kayser O, Muller RH (2000) Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int J Pharm 196:161–164

    Article  CAS  PubMed  Google Scholar 

  • Jarmer DJ, Lengsfeld CS, Randolph TW (2003) Manipulation of particle size distribution of poly(l-lactic acid) nanoparticles with a jet-swirl nozzle during precipitation with a compressed antisolvent. J Supercrit Fluids 27(3):317–336

    Article  CAS  Google Scholar 

  • Jarmer DJ, Lengsfeld CS, Randolph TW (2004) Nucleation and growth rates of poly(l-lactic acid) microparticles during precipitation with a compressed-fluid antisolvent. Langmuir 20(17):7254–7264

    Article  CAS  PubMed  Google Scholar 

  • Jarmer DJ, Lengsfeld CS, Randolph TW (2006) Scale-up criteria for an injector with a confined mixing chamber during precipitation with a compressed-fluid antisolvent. J Supercrit Fluids 37(2):242–253

    Article  CAS  Google Scholar 

  • Johnson BK, Prud’homme RK (2003a) Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem 56(10):1021–1024

    Article  CAS  Google Scholar 

  • Johnson BK, Prud’homme RK (2003b) Chemical processing and micromixing in confined impinging, jets. AIChE J 49(9):2264–2282

    Article  CAS  Google Scholar 

  • Johnson BK, Prud’homme RK (2003c) Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett 91(11):118302/1–118302/4

    Article  CAS  Google Scholar 

  • Johnson BK, Saad W, Prud’homme RK (2006) Nanoprecipitation of pharmaceuticals using mixing and block copolymer stabilization. In: ACS symposium series, polymeric drug delivery II, vol 924, pp 278–291

    Google Scholar 

  • Jouyban A, Rehman M, Shekunov BY, Chan H-K, Clark BJ, York P (2002) Solubility prediction in supercritical CO2 using minimum number of experiments. J Pharm Sci 91(5):1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Kayrak D, Akman U, Hortaçsu Ö (2003) Micronization of Ibuprofen by RESS. J Supercrit Fluids 26(1):17–31

    Article  CAS  Google Scholar 

  • Keck CM, Mueller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm 62(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Keshavarz A, Karimi-Sabet J, Fattahi A, Golzary AA, Rafiee-Tehrani M, Dorkoosh FA (2012) Preparation and characterization of raloxifene nanoparticles using Rapid Expansion of Supercritical Solution (RESS). J Supercrit Fluids 63:169–179

    Article  CAS  Google Scholar 

  • Kikic I, De Zordi N, Moneghini M, Solinas D (2010) Solubility estimation of drugs in ternary systems of interest for the antisolvent precipitation processes. J Supercrit Fluids 55(2):616–622

    Article  CAS  Google Scholar 

  • Kim MS, Kim JS, Park HJ, Cho WK, Cha KH, Hwang SJ (2011) Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int J Nanomedicine 6:2997–3009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kipp JE (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 284(1–2):109–122

    Article  CAS  PubMed  Google Scholar 

  • Ksibi H, Subra P, Garrabos Y (1995) Formation of fine powders of caffeine by RESS. Adv Powder Technol 6(1):25–33

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Lengsfeld CS, Delplanque JP, Barocas VH, Randolph TW (2000) Mechanism governing microparticle morphology during precipitation by a compressed antisolvent: atomization vs nucleation and growth. J Phys Chem B 104(12):2725–2735

    Article  CAS  Google Scholar 

  • Li J, Rodrigues M, Paiva A, Matos HA, Gomes de Azevedo E (2005) Modeling of the PGSS process by crystallization and atomization. AIChE J 51(8):2343–2357

    Article  CAS  Google Scholar 

  • Li S, Liu Y, Liu T, Zhao L, Zhao J, Feng N (2011) Development and in-vivo assessment of the bioavailability of oridonin solid dispersions by the gas anti-solvent technique. Int J Pharm 411(1–2):172–177

    Article  CAS  PubMed  Google Scholar 

  • Lim RTY, Ng WK, Tan RBH (2010) Amorphization of pharmaceutical compound by co-precipitation using supercritical anti-solvent (SAS) process (Part I). J Supercrit Fluids 53(1–3):179–184

    Article  CAS  Google Scholar 

  • Limayem I, Charcosset C, Fessi H (2004) Purification of nanoparticle suspensions by a concentration/diafiltration process. Sep Purif Technol 38:1–9

    Article  CAS  Google Scholar 

  • Lin C, Muhrer G, Mazzotti M, Subramaniam B (2003) Vapor-liquid mass transfer during gas antisolvent recrystallization: modeling and experiments. Ind Eng Chem Res 42(10):2171–2182

    Article  CAS  Google Scholar 

  • Lipinski CA (2001) Avoiding investment in doomed drugs. Is poor solubility an industry wide problem? Curr Drug Discov 1:17–19

    Google Scholar 

  • Lipinski C (2002) Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev 5:82–85

    Google Scholar 

  • Liu G-T, Nagahama K (1996) Application of rapid expansion of supercritical solutions in the crystallization separation. Ind Eng Chem Res 35:4626–4634

    Article  CAS  Google Scholar 

  • Liu Y, Cheng C, Liu Y, Prud’homme RK, Fox RO (2008) Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem Eng Sci 63(11):2829–2842

    Article  CAS  Google Scholar 

  • Liu G, Zhang D, Jiao Y, Zheng D, Liu Y, Duan C, Jia L, Zhang Q, Lou H (2012) Comparison of different methods for preparation of a stable riccardin D formulation via nano-technology. Int J Pharm 422(1–2):516–522

    Article  CAS  PubMed  Google Scholar 

  • Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125(1):91–97

    Article  CAS  Google Scholar 

  • Liversidge EM, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18:113–120

    Article  PubMed  CAS  Google Scholar 

  • Maa Y-F, Nguyen P-A, Sweeney T, Shire SJ, Hsu CC (1999) Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res 16(2):249–254

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Cocero MJ (2004) Numerical modeling of jet hydrodynamics, mass transfer, and crystallization kinetics in the supercritical antisolvent (SAS) process. J Supercrit Fluids 32(1–3):203–219

    Article  CAS  Google Scholar 

  • Martin A, Cocero MJ (2008) Micronization processes with supercritical fluids: fundamentals and mechanisms. Adv Drug Deliv Rev 60(3):339–350

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Bouchard A, Hofland GW, Witkamp GJ, Cocero MJ (2007) Mathematical modeling of the mass transfer from aqueous solutions in a supercritical fluid during particle formation. J Supercrit Fluids 41(1):126–137

    Article  CAS  Google Scholar 

  • Martin A, Pham H, Kilzer A, Kareth S, Weidner E (2010) Micronization of polyethylene glycol by PGSS (particles from gas saturated solutions)-drying of aqueous solutions. Chem Eng Process 49:1259–1266

    Article  CAS  Google Scholar 

  • Matteucci ME, Hotze MA, Johnston KP, Williams RO III (2006) Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir 22(21):8951–8959

    Article  CAS  PubMed  Google Scholar 

  • Matteucci ME, Brettmann BK, Rogers TL, Elder EJ, Williams RO, Johnston KP (2007) Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media. Mol Pharm 4(5):782–793

    Article  CAS  PubMed  Google Scholar 

  • Matteucci ME, Paguio JC, Miller MA, Williams RO, Johnston KP III (2008) Flocculated amorphous nanoparticles for highly supersaturated solutions. Pharm Res 25(11):2477–2487

    Article  CAS  PubMed  Google Scholar 

  • Matteucci ME, Paguio JC, Miller MA III, Williams RO, Johnston KP (2009) Highly supersaturated solutions from dissolution of amorphous itraconazole microparticles at pH 6.8. Mol Pharm 6(2):375–385

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Santiago J, Teja AS (1999) The solubility of solids in supercritical fluids. Fluid Phase Equilibr 158–160:501–510

    Article  Google Scholar 

  • Miller MA, DiNunzio J, Matteucci ME, Ludher BS III, Williams RO, Johnston KP (2012) Flocculated amorphous itraconazole nanoparticles for enhanced in vitro supersaturation and in vivo bioavailability. Drug Dev Ind Pharm 38(5):557–570

    Article  CAS  PubMed  Google Scholar 

  • Mueller M, Meier U, Kessler A, Mazzotti M (2000) Experimental study of the effect of process parameters in the recrystallization of an organic compound using compressed carbon dioxide as antisolvent. Ind Eng Chem Res 39(7):2260–2268

    Article  CAS  Google Scholar 

  • Muhrer G, Mazzotti M (2003) Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent. Biotechnol Prog 19(2):549–556

    Article  CAS  PubMed  Google Scholar 

  • Muhrer G, Lin C, Mazzotti M (2002) Modeling the gas antisolvent recrystallization process. Ind Eng Chem Res 41(15):3566–3579

    Article  CAS  Google Scholar 

  • Muhrer G, Mazzotti M, Muller M (2003) Gas antisolvent recrystallization of an organic compound. Tailoring product PSD and scaling-up. J Supercrit Fluids 27(2):195–203

    Article  CAS  Google Scholar 

  • Muller RH, Bohm BHL (1997) Colloidal drug carriers expert meeting, 3rd meeting, Berlin, Germany, May 29–31, 1997. In: Mueller RH, Benita S, Boehm BHL (eds) Nanosuspensions. Medpharm Scientific, Berlin, pp 149–174

    Google Scholar 

  • Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47(1):3–19

    Article  CAS  PubMed  Google Scholar 

  • Mullers K, Paisana M, Wahl MA (2015) Simultaneous Formation and Micronization of Pharmaceutical Cocrystals by Rapid Expansion of Supercritical Solutions (RESS). Pharm Res 32(2):702–713

    Google Scholar 

  • Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic, New York

    Google Scholar 

  • Nguyen XC, Herberger JD, Burke PA (2004) Protein powders for encapsulation: a comparison of spray-freeze drying and spray drying of darbepoetin alfa. Pharm Res 21(3):507–514

    Article  CAS  PubMed  Google Scholar 

  • Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Article  Google Scholar 

  • Okamoto H, Danjo K (2008) Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation. Adv Drug Deliv Rev 60(3):433–446

    Article  CAS  PubMed  Google Scholar 

  • Overhoff KA, Engstrom JD, Chen B, Scherzer BD, Milner TE, Johnston KP, Williams RO (2007a) Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. Eur J Pharm Biopharm 65(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Overhoff KA, Moreno A, Miller DA, Johnston KP, Williams RO (2007b) Solid dispersions of itraconazole and enteric polymers made by ultra-rapid freezing. Int J Pharm 336(1):122–132

    Article  CAS  PubMed  Google Scholar 

  • Overhoff KA, Johnston KP, Tam J, Engstrom J, Williams RO III (2009) Use of thin film freezing to enable drug delivery: a review. J Drug Deliv Sci Technol 19(2):89–98

    Article  CAS  Google Scholar 

  • Padrela L, Rodrigues MA, Velaga SP, Matos HA, de Azevedo EG (2009) Formation of indomethacin-saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci 38(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, Gomes de Azevedo E (2010) Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids 53(1–3):156–164

    Article  CAS  Google Scholar 

  • Pandit N, Trygstad T, Croy S, Bohorquez M, Koch C (2000) Effect of salts on the micellization, clouding, and solubilization behavior of pluronic F127 solutions. J Colloid Interface Sci 222:213–220

    Article  CAS  PubMed  Google Scholar 

  • Pang P, Englezos P (2002) Phase separation of polyethylene oxide (PEO)-water solution and its relationship to the flocculating capability of the PEO. Fluid Phase Equilibr 194–197:1059–1066

    Article  Google Scholar 

  • Pathak P, Meziani MJ, Desai T, Sun Y-P (2004) Nanosizing drug particles in supercritical fluid processing. J Am Chem Soc 126(35):10842–10843

    Article  CAS  PubMed  Google Scholar 

  • Pathak P, Meziani MJ, Desai T, Sun Y-P (2006) Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing. J Supercrit Fluids 37(3):279–286

    Article  CAS  Google Scholar 

  • Pathak P, Prasad GL, Meziani MJ, Joudeh AA, Sun Y-P (2007) Nanosized paclitaxel particles from supercritical carbon dioxide processing and their biological evaluation. Langmuir 23(5):2674–2679

    Article  CAS  PubMed  Google Scholar 

  • Park J, Cho W, Cha KH, Ahn J, Han K, Hwang SJ (2013) Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process. Int J Pharm 441(1–2):50–55

    Article  CAS  PubMed  Google Scholar 

  • Perez de Diego Y, Wubbolts FE, Jansens PJ (2006) Modelling mass transfer in the PCA process using the Maxwell–Stefan approach. J Supercrit Fluids 37(1):53–62

    Google Scholar 

  • Perrut M, Jung J, Leboeuf F (2005) Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes: Part I: Micronization of neat particles. Int J Pharm 288(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Pestieau A, Krier F, Lebrun P, Brouwers A, Streel B, Evrard B (2015) Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation. Int J Pharm 485(1–2):295–305

    Article  CAS  PubMed  Google Scholar 

  • Pratsinis SE (1988) Simultaneous nucleation, condensation, and coagulation in aerosol reactors. J Colloid Interface Sci 124(2):416–427

    Article  CAS  Google Scholar 

  • Pustulka KM, Wohl AR, Lee HS, Michel AR, Han J, Hoye TR, McCormick AV, Panyam J, Macosko CW (2013) Flash nanoprecipitation: particle structure and stability. Mol Pharm 10(11):4367–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3(9):785–796

    Article  CAS  PubMed  Google Scholar 

  • Rasenack N, Muller BW (2002) Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm Res 19(12):1894–1900

    Article  CAS  PubMed  Google Scholar 

  • Reverchon E, Della Porta G (1999) Production of antibiotic micro- and nano-particles by supercritical antisolvent precipitation. Powder Technol 106(1–2):23–29

    Article  CAS  Google Scholar 

  • Reverchon E, Pallado P (1996) Hydrodynamic modeling of the RESS process. J Supercrit Fluids 9(4):216–221

    Article  CAS  Google Scholar 

  • Reverchon E, Donsi G, Gorgoglione D (1993) Salicylic acid solubilization in supercritical CO2 and its micronization by RESS. J Supercrit Fluids 6(4):241–248

    Article  CAS  Google Scholar 

  • Reverchon E, Della Porta G, Falivene MG (2000) Process parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation. J Supercrit Fluids 17(3):239–248

    Article  CAS  Google Scholar 

  • Reverchon E, Caputo G, De Marco I (2003a) Role of phase behavior and atomization in the supercritical antisolvent precipitation. Ind Eng Chem Res 42(25):6406–6414

    Article  CAS  Google Scholar 

  • Reverchon E, De Marco I, Caputo G, Della Porta G (2003b) Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation. J Supercrit Fluids 26(1):1–7

    Article  CAS  Google Scholar 

  • Reverchon E, De Marco I, Torino E (2007) Nanoparticles production by supercritical antisolvent precipitation: a general interpretation. J Supercrit Fluids 43(1):126–138

    Article  CAS  Google Scholar 

  • Reverchon E, De Marco I (2011) Mechanisms controlling supercritical antisolvent precipitate morphology. Chem Eng J 169(1–3):358–370

    Article  CAS  Google Scholar 

  • Rodrigues M, Peiriço N, Matos H, Gomes de Azevedo E, Lobato MR, Almeida AJ (2004) Microcomposites theophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems. J Supercrit Fluids 29(1–2):175–184

    Article  CAS  Google Scholar 

  • Rodrigues MA, Li J, Padrela L, Almeida A, Matos HA, de Azevedo EG (2009) Anti-solvent effect in the production of lysozyme nanoparticles by supercritical fluid-assisted atomization processes. J Supercrit Fluids 48(3):253–260

    Article  CAS  Google Scholar 

  • Rogers TL, Johnston KP, Williams RO III (2001a) Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Dev Ind Pharm 27(10):1003–1015

    Google Scholar 

  • Rogers TL, Gillespie IB, Hitt JE, Fransen KL, Crowl CA, Tucker CJ, Kupperblatt GB, Becker JN, Wilson DL, Todd C, Broomall CF, Evans JC, Elder EJ (2004) Development and characterization of a scalable controlled precipitation process to enhance the dissolution of poorly water-soluble drugs. Pharm Res 21(11):2048–2057

    Article  CAS  PubMed  Google Scholar 

  • Rossmanna M, Braeuerb A, Leipertz A, Schluecker E (2013) Manipulating the size, the morphology and the polymorphism of acetaminophen using supercritical antisolvent (SAS) precipitation. J Supercrit Fluids 82:230–237

    Article  CAS  Google Scholar 

  • Sarkari M, Brown J, Chen X, Swinnea S, Williams RO, Johnston KP (2002) Enhanced drug dissolution using evaporative precipitation into aqueous solution. Int J Pharm 243(1–2):17–31

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BS (2010) Supercritical fluid technology: an overview of pharmaceutical applications. Int J PharmTechnol Res 2(1):810–826

    CAS  Google Scholar 

  • Shah N, Sandhu H, Phuapradit W, Lyer R, Albano A, Desai D, Choi D, Tang K, Tian H, Chokshi H, Go Z, Malick W, Radinov R, Shankar A, Wolff S, Mair H (2010) Solid complexes with ionic polymers. Pharm Technol 32(12):46–47

    Google Scholar 

  • Shah N, Sandhu H, Phuapradit W, Pinal R, Iyer R, Albano A, Chatterji A, Anand S, Choi DS, Tang K, Tian H, Chokshi H, Singhal D, Malick W (2012) Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs. Int J Pharm 438(1–2):53–60

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Iyer RM, Mair HJ, Choi DS, Tian H, Diodone R, Fahnrich K, Pabst-PAvot A, Tang K, Scheubel E, Grippo JF, Moreira SA, Go Z, Mouskountakis J, Louie T, Ibrahim PN, Sandhu H, Rubia L, Chokshi H, Singhal D, Malick W (2013) Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. J Pharm Sci 102(3):967–981

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Hong S, Prud’homme RK, Liu Y (2011) Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles. J Nanopart Res 13(9):4109–4120

    Article  CAS  Google Scholar 

  • Shariati A, Peters CJ (2002) Measurements and modeling of the phase behavior of ternary systems of interest for the GAS process: I. The system carbon dioxide + 1-propanol + salicylic acid. J Supercrit Fluids 23(3):195–208

    Article  CAS  Google Scholar 

  • Shekunov BY, Hanna M, York P (1999) Crystallization process in turbulent supercritical flows. J Crystal Growth 198/199(Pt. 2):1345–1351

    Google Scholar 

  • Shoyele SA, Cawthorne S (2006) Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev 58(9–10):1009–1029

    Article  CAS  PubMed  Google Scholar 

  • Sinswat P, Gao X, Yacaman MJ, Williams RO, Johnston KP (2005) Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution. Int J Pharm 302(1–2):113–124

    Article  CAS  PubMed  Google Scholar 

  • Sinswat P, Matteucci ME, Johnston KP, Williams RO III (2007) Dissolution rates and supersaturation behavior of amorphous repaglinide particles produced by controlled precipitation. J Biomed Nanotechnol 3(1):18–27

    Article  CAS  Google Scholar 

  • Sohnel O, Garside J (1992) Precipitation: basic principles and industrial applications. Butterworth-Heinemann, Newton

    Google Scholar 

  • Sporanox Package Insert (Janssen Pharmaceutica Products, L.P.)

    Google Scholar 

  • Subramaniam B, Rajewski RA, Snavely K (1997) Pharmaceutical processing with supercritical carbon dioxide. J Pharm Sci 86(8):885–890

    Article  CAS  PubMed  Google Scholar 

  • Tam JM, McConville JT, Williams RO, Johnston KP III (2008) Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. J Pharm Sci 97(11):4915–4933

    Article  CAS  PubMed  Google Scholar 

  • Thakur R, Gupta RB (2005) Rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process: formation of griseofulvin nanoparticles. Ind Eng Chem Res 44(19):7380–7387

    Article  CAS  Google Scholar 

  • Thakur R, Gupta RB (2006a) Rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process: formation of 2-aminobenzoic acid nanoparticle. J Supercrit Fluids 37(3):307–315

    Article  CAS  Google Scholar 

  • Thakur R, Gupta RB (2006b) Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Int J Pharm 308(1–2):190–199

    Article  CAS  PubMed  Google Scholar 

  • Thote AJ, Gupta RB (2005) Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine 1(1):85–90

    CAS  PubMed  Google Scholar 

  • Torino E, Marco ID, Reverchon E (2010) Organic nanoparticles recovery in supercritical antisolvent precipitation. J Supercrit Fluids 55:300–306

    Article  CAS  Google Scholar 

  • Tozuka Y, Miyazaki Y, Takeuchi H (2010) A combinational supercritical CO2 system for nanoparticle preparation of indomethacin. Int J Pharm 386(1–2):243–248

    Article  CAS  PubMed  Google Scholar 

  • Turk M (2000) Influence of thermodynamic behaviour and solute properties on homogeneous nucleation in supercritical solutions. J Supercrit Fluids 18(3):169–184

    Article  CAS  Google Scholar 

  • Turk M (2009) Manufacture of submicron drug particles with enhanced dissolution behaviour by rapid expansion processes. J Supercrit Fluids 47(3):537–545

    Article  CAS  Google Scholar 

  • Turk M, Bolten D (2010) Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): results for naproxen. J Supercrit Fluids 55:778–785

    Article  CAS  Google Scholar 

  • Turk M, Lietzow R (2008) Formation and stabilization of submicron particles via rapid expansion processes. J Supercrit Fluids 45:346–355

    Article  CAS  Google Scholar 

  • Turk M, Hils P, Helfgen B, Schaber K, Martin HJ, Wahl MA (2002) Micronization of pharmaceutical substances by the rapid expansion of supercritical solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J Supercrit Fluids 22(1):75–84

    Article  CAS  Google Scholar 

  • Uchida H, Nishijima M, Sano K, Demoto K, Sakabe J, Shimoyama Y (2015) Production of theophylline nanoparticles using rapid expansion of supercritical solutions with a solid cosolvent (RESS-SC) technique. J Supercrit Fluids 105:128–135

    Article  CAS  Google Scholar 

  • Vaughn JM, Gao X, Yacaman M-J, Johnston KP, Williams RO (2005) Comparison of powder produced by evaporative precipitation into aqueous solution (EPAS) and spray freezing into liquid (SFL) technologies using novel Z-contrast STEM and complimentary techniques. Eur J Pharm Biopharm 60(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Vemavarapu C, Mollan MJ, Needham TE (2009) Coprecipitation of pharmaceutical actives and their structurally related additives by the RESS process. Powder Technol 189(3):444–453

    Article  CAS  Google Scholar 

  • Weber M, Thies M (2002) Understanding the RESS process. In: Sun Y-P (ed) Supercritical fluid technology in materials science and engineering. Marcel Dekker, New York, pp 387–437

    Google Scholar 

  • Weber A, Weiss C, Tschernjaew J, Kummel R (1999) Gas antisolvent crystallization.From fundamentals to industrial applications. Fraunhofer Institut Umwelt- Sicherheits- Energietechnik, Oberhausen, pp 235–238

    Google Scholar 

  • Weber M, Russell LM, Debenedetti PG (2002) Mathematical modeling of nucleation and growth of particles formed by the rapid expansion of a supercritical solution under subsonic conditions. J Supercrit Fluids 23(1):65–80

    Article  CAS  Google Scholar 

  • Werling JO, Debenedetti PG (1999) Numerical modeling of mass transfer in the supercritical antisolvent process. J Supercrit Fluids 16(2):167–181

    Article  CAS  Google Scholar 

  • Werling JO, Debenedetti PG (2000) Numerical modeling of mass transfer in the supercritical antisolvent process: miscible conditions. J Supercrit Fluids 18(1):11–24

    Article  CAS  Google Scholar 

  • Westesen K, Siekmann B (1998) Solid lipid particles, particles of bioactive agents and methods for the manufacture and use thereof. US 5785976, 12 April 1994

    Google Scholar 

  • Wubbolts FE, Bruinsma OSL, van Rosmalen GM (1999) Dry-spraying of ascorbic acid or acetaminophen solutions with supercritical carbon dioxide. J Crystal Growth 198/199(Pt. 1):767–772

    Google Scholar 

  • Xu XM, Song YM, Ping QN, Wang Y, Liu XY (2006) Effect of ionic strength on the temperature-dependent behavior of hydroxypropyl methylcellulose solution and matrix tablet. J Appl Polym Sci 102:4066–4074

    Article  CAS  Google Scholar 

  • Yildiz N, Tuna S, Döker O, Çalimli A (2007) Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS). J Supercrit Fluids 41(3):440–451

    Article  CAS  Google Scholar 

  • Young TJ, Johnston KP, Mishima K, Tanaka H (1999) Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent. J Pharm Sci 88(6):640–650

    Article  CAS  PubMed  Google Scholar 

  • Young TJ, Mawson S, Johnston K (2000) Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol Prog 16:402–407

    Article  CAS  PubMed  Google Scholar 

  • Young TJ, Johnston KP, Pace GW, Mishra AK (2003) Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution. AAPS PharmSciTech 5(1):1–16

    Article  Google Scholar 

  • Young TJ, Johnston KP, Pace GW, Mishra AK (2004) Phospholipid-stabilized nanoparticles of cyclosporin A by rapid expansion from supercritical to aqueous solution. AAPS PharmSciTech 5(1):70–85

    PubMed Central  Google Scholar 

  • Zhu Z, Anacker JL, Ji S, Hoye TR, Macosko CW, Prud’homme RK (2007) Formation of block copolymer-protected nanoparticles via reactive impingement mixing. Langmuir 23(21):10499–10504

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Margulis-Goshen K, Magdassi S, Talmon Y, Macosko CW (2010) Polyelectrolyte stabilized drug nanoparticles via flash nanoprecipitation: a model study with β-carotene. J Pharm Sci 99(10):4295–4306

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z (2014) Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure. Mol Pharm 11(3):776–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Williams III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Maincent, J., Williams, R.O. (2016). Precipitation Technologies for Nanoparticle Production. In: Williams III, R., Watts, A., Miller, D. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-42609-9_12

Download citation

Publish with us

Policies and ethics