Skip to main content

Plant Responses to Salinity Through an Antioxidative Metabolism and Proteomic Point of View

  • Chapter
  • First Online:
Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 2

Abstract

Salt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity in different degrees. According to Food and Agriculture Organization of the United Nations (FAO), about 800 million Ha of land are affected by salinity around the world. In addition to the known components of osmotic stress and ion toxicity, salt stress is also manifested as an oxidative stress with all of these factors contributing to its deleterious effects. Although salinity-induced oxidative stress has been widely described, the effect of salinity on the antioxidative system and/or ROS generation in specific cell compartments has been less studied.

In recent years, high-throughput proteomic techniques have provided new ways to explore the complex network of plant salinity response in order to identify key elements for stress tolerance acquisition. However, from an overview of the available information about plant salinity responses it can be concluded that only a small number of the salt-inducible genes reported in the literature have been identified at the protein level. Most of the salt-responsive proteins identified in these studies correspond to the categories of amino acid metabolism, energy regulation, detoxification and redox regulation.

The overexpression of genes encoding for different antioxidant enzymes is a common strategy to induce salt tolerance in crop plants. In this sense, the overexpression of H2O2-scavenging enzymes (APX, CAT), SOD, ASC-recycling enzymes or GSH-related enzymes resulted in increased salt tolerance in different plant species. In addition, some authors have used the co-expression of two or three genes encoding antioxidants to achieve salt tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sánchez-Blanco MJ, Hernández JA (2015a) NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. J Plant Physiol 183:41–51

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sánchez-Blanco MJ, Hernández JA (2015b) Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242:829–849

    Article  CAS  PubMed  Google Scholar 

  • Aghaei K, Ehsanpour AA, Shah AH, Komatsu S (2009) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36:91–98

    Article  CAS  PubMed  Google Scholar 

  • Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A (2007) A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiol 145:258–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Azevedo-Neto AD, Pitsco JT, Eneas-Filho J, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and saltsensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  CAS  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004a) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    Article  CAS  PubMed  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004b) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  CAS  Google Scholar 

  • Bai X, Yang L, Yang Y, Ahmad P, Yang Y, Hu X (2011) Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. J Proteome Res 10:4349–4364

    Article  CAS  PubMed  Google Scholar 

  • Bolu WH, Polle A (2004) Growth and stress reactions in roots and shoots of a salt-sensitive poplar species (Populus x canescens). Trop Ecol 45:161–171

    Google Scholar 

  • Chen J-H, Jiang H-W, Hsieh E-J, Chen H-Y, Chien C-T, Hsieh H-L, Lin T-P (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Pan YH, An LY, Yang WJ, Xu LG, Zhu C (2013) Heterologous expression of a halophilic archaeon manganese superoxide dismutase enhances salt tolerance in transgenic rice. Russ J Plant Physiol 60(3):359–366

    Article  CAS  Google Scholar 

  • Chitteti BR, Peng ZH (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Gomez M, Hernandez JA, del Rio LA (1993) Metabolism of activated oxygen in leaf peroxisomes from two Pisum sativun L. cultivars with different sensivity to sodium chloride. J Plant Physiol 141:160–165

    Article  CAS  Google Scholar 

  • Corpas FJ, Hayashi M, Mano S, Nishimura M, Barroso JB (2009) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151:2083–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RR (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Barba-Espin G, Clemente-Moreno MJ, Hernández JA (2010) Characterization of the antioxidative system during the vegetative development of pea plants. Biol Plant 54:76–82

    Google Scholar 

  • Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotech J 11:976–985

    Google Scholar 

  • Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69:577–592

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in heath. Trends Plant Sci 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Eltelib HA, Fujikawa Y, Esaka M (2012) Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S Afr J Bot 78:295–301

    Article  CAS  Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolás E, Barba-Espín G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernández JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought. J Exp Bot 62:2599–2613

    Article  CAS  PubMed  Google Scholar 

  • Fernández-García N, Hernández M, Casado-Vela J, Bru R, Elortza F, Hedden P, Olmos E (2011) Changes to the proteome and targeted metabolites of xylem sap in Brassica oleracea in response to salt stress. Plant Cell Environ 34:821–836

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  • Gallie DR (2013) L-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica 2013:24. Article ID 795964

    Google Scholar 

  • Gill T, Sreenivasulu Y, Kumar S, Ahuja PS (2010) Over-expression of Potentilla superoxide dismutase improves salt stress tolerance during germination and growth in Arabidopsis thaliana. J Plant Genet Transgenics 1:1–10

    Google Scholar 

  • Gómez JM, Hernández JA, Jiménez A, Del Río LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31:S11–S18

    Article  PubMed  Google Scholar 

  • Gómez JM, Jiménez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55:119–130

    Article  PubMed  CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas B, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta 203:460–469

    Google Scholar 

  • Guo Y, Song Y (2009) Differential proteomic analysis of apoplastic proteins during initial phase of salt stress in rice. Plant Signal Behav 4:121–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (2000) Free radicals in biology and medicine. Oxford UniversityPress, London

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hernández JA, Corpas FJ, Gómez M, Del Río LA, Sevilla F (1993) Salt induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Plant Physiol 89:103–110

    Article  Google Scholar 

  • Hernández JA, Olmos E, Corpas FJ, Sevilla F, Del Río LA (1995) Salt-induced oxidative stress in chloroplast of pea plants. Plant Sci 105:151–167

    Article  Google Scholar 

  • Hernández JA, Campillo A, Jiménez A, Alarcon JJ, Sevilla F (1999) Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol 141:241–251

    Article  Google Scholar 

  • Hernández JA, Jiménez A, Mullineaux PM, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862

    Article  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Ros-Barceló A, Sevilla F (2001) Antioxidant systems and O2.-/H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez J, Nistal DB, Labrador E (2002) Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Sci 163:507–514

    Google Scholar 

  • Hoque MA, Banu MN, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Guo S, Li X, Ren X (2013) Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti(4+)--IMAC enrichment and ESI-Q-TOF MS. Electrophoresis 34:485–492

    Article  PubMed  CAS  Google Scholar 

  • Ikbal FE, Hernández JA, Barba-Espín G, Koussa T, Aziz A, Faize M, Diaz-Vivancos P (2014) Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. J Plant Physiol 171:779–788

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea (Pisum sativum L.) leaves. Plant Physiol 114:275–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Kim IS, Shin SY, Park TH, Park HM, Kim YH, Lee GS, Kang HG, Lee SH, Yoon HS (2014) Overexpression of dehydroascorbate reductase confers enhanced tolerance to salt stress in rice plants (Oryza sativa L. japonica). J Agron Crop Sci 200:444–456

    Article  CAS  Google Scholar 

  • Koffler BE, Luschin-Ebengreuth N, Zechmann B (2015) Compartment specific changes of the antioxidative status in Arabidopsis thaliana during salt stress. J Plant Biol 58:8–16

    Article  CAS  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757–6789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353

    Article  CAS  PubMed  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  CAS  Google Scholar 

  • Lee Y-P, Kim S-H, Bang J-W, Lee H-S, Kwak S-S, Kwon S-Y (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598

    Article  CAS  PubMed  Google Scholar 

  • Li Y-J, Hai R-L, Du X-H, Jiang X-N, Lu H (2009) Over-expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breed 128:404–410

    Article  CAS  Google Scholar 

  • Li Q, Li Y, Li C, Yu X (2012) Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen and salt stresses in tomato. Czech J Genet Plant Breed 48:74–86

    Google Scholar 

  • Light GG, Mahan JR, Roxas VP, Allen RD (2005) Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S -transferase fail to provide improved stress tolerance. Planta 222:346–354

    Article  CAS  PubMed  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ Exp Bot 62:176–184

    Google Scholar 

  • Lu ZQ, Liu D, Liu SK (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Wu J, Li Y, Nan Z, Guo X et al (2013) Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS One 8(1):e54002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431

    Article  CAS  Google Scholar 

  • Meneguzzo S, Sgherri CLM, Navari-Izzo F, Izzo R (1998) Stromal and thylakoid-bound ascorbate peroxidase in NaCl-treated wheat. Physiol Plant 104:735–740

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mitller R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003a) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gomez L, Volokita M, Tal M, Foyer CH, Guy M (2003b) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554:417–421

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates teh antioxidative system in root mitocondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 399:1105–1113

    Article  CAS  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriwaki T, Yamamoto Y, Aida T, Funahashi T, Shishido T, Asada M, Prodhan SH, Komamine A, Motohashi T (2008) Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5. Plant Biotechnol Rep 2:41–46

    Article  Google Scholar 

  • Mutlu S, Atici Ö, Nalbantoglu B (2009) Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biol Plant 53:334–338

    Article  CAS  Google Scholar 

  • Nagamiya K, Motohashi T, Nakao K, Prodhan SH, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol Rep 1:49–55

    Article  Google Scholar 

  • Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Kim DY, Kim BG, Yoon IS (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 10:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Phan Tran LS (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49

    Article  PubMed  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Pennell R (1998) Cell walls: structures and signals. Curr Opin Plant Biol 1:504–510

    Article  CAS  PubMed  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Article  CAS  PubMed  Google Scholar 

  • Qi YC, Liu WQ, Qiu LY, Zhang SM, Ma L, Zhang H (2010) Overexpression of glutathione S-transferase gene increases salt tolerance of Arabidopsis. Russ J Plant Physiol 57:233–240

    Article  CAS  Google Scholar 

  • Qiu-Fang Z, Yuan-Yuan L, Cai-Hong P, Cong-Ming L, Bao-Shan W (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci 168:423–430

    Article  CAS  Google Scholar 

  • Ramanjulu S, Kaiser W, Dietz KJ (1999) Salt and drought stress differentially affect the accumulation of extracellular proteins in barley. Z Naturforsch 54:337–347

    CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Sgherri CLM, Maffei M, Navari-lzzo F (2000) Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J Plant Physiol 157:273–279

    Article  CAS  Google Scholar 

  • Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptative mechanisms. In: Shabala S (ed) Plant stress physiology. CAB International, London, pp 59–93. ISBN 9781845939953

    Chapter  Google Scholar 

  • Shafi A, Gill T, Sreenivasulu Y, Kumar S, Ahuja PS, Singh AK (2015) Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguinea. Protoplasma 252:41–51

    Article  CAS  PubMed  Google Scholar 

  • Sierla M, Rahikainen M, Salojärvi J, Kangasjärvi J, Kangasjärvi S (2013) Apoplastic and chloroplastic redox signaling networks in plant stress responses. Antioxid Redox Signal 18:2220–2239

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1991) Oxidative stress II. Oxidants and antioxidants. Academic, London

    Google Scholar 

  • Song Y, Zhang C, Ge W, Zhang Y, Burlingame AL, Guoa Y (2011) Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. J Proteomics 74:1045–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultana S, Khew CY, Morshed MM, Namasivayam P, Napis S, Ho CL (2012) Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. J Plant Physiol 169:311–318

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599

    Article  CAS  PubMed  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  CAS  PubMed  Google Scholar 

  • Tseng MJ, Liu C-W, Yiu J-C (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  CAS  PubMed  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Ferna’ndez-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez MV, Colmenero-Varea P, del Río LA, Barroso JB (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ying Y, Chen J, Wang XC (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167:671–677

    Article  CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Uratsu SL, Cui MG, Dandekar A, Fuchigami L (2007) Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress. J Appl Hortic 9:3–8

    Google Scholar 

  • Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Shao J, Shi Y, Dai S, Fritz E, Hüttermann A, Polle A (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947–957

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhou L, Fu Y, Cheung MY, Wong FL, Phang TH, Sun Z, Lam HM (2012) Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress. Plant Cell Environ 35:1932–1947

    Article  CAS  PubMed  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3545–3557

    Google Scholar 

  • Xu E, Brosché M (2014) Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biol 14:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu W-F, Shi W-M, Ueda A, Takabe T (2008) Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere 18:486–495

    Article  CAS  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37:21–33

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149:916–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Zhang H (2006) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tissue Organ Cult 86:349–358

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hernández, J.A., Barba-Espín, G., Clemente-Moreno, M.J., Díaz-Vivancos, P. (2017). Plant Responses to Salinity Through an Antioxidative Metabolism and Proteomic Point of View. In: Sarwat, M., Ahmad, A., Abdin, M., Ibrahim, M. (eds) Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-42183-4_8

Download citation

Publish with us

Policies and ethics