Skip to main content

Effect of Nanoparticles on Plants with Regard to Physiological Attributes

  • Chapter
  • First Online:
Plant Nanotechnology

Abstract

The growth parameters of plants are influenced by various biotic and abiotic factors. The increased interference of humans with the environment has led to heightened concern over such activities on the living systems, including plants. With tremendous progress being made in the field of engineering, manufacturing, construction, etc., onus has shifted to the possible effects of such developments on the ecosystem. Nanotechnology has emerged as an indispensable tool for the future, with its reach spanning across diverse domains. Such a rapid advance has resulted in the exodus of various types of nanomaterials into the environment. Thus, it becomes essential to understand the imminent effects, either advantageous or deleterious, of these nanomaterials on the living subjects advertently or inadvertently exposed to them. Numerous studies have focused on the effects of such nanomaterials in the nanoparticulate form on the mammalian system, with increased studies on the plant system as well. Due to the complex nature of uptake and translocation mechanism present in plants, it has been relatively difficult to unanimously devise a general dataset of the effects that nanoparticles (NPs) have on them. Research over the past years has documented mostly toxic effects of the NPs, either during the germination stage or with respect to the shoot–root length, while few others have explored the possibilities of utilizing them as carriers for chemicals as herbicides, pesticides, fertilizers, or in some cases genes. There have been numerous contradictory findings with some reports suggesting growth enhancing effects and others observing retarding effects of similar NPs on similar or different plant species. Such contradictions and lack of conclusive observations has slowed down the impact of nanotechnology in the agriculture industry when compared with the medical scene. This scenario demands a comprehensive calibration of the analysis and interpretation of NP–plant interaction and effects thereof from the physiological, biochemical, and photosynthetic level to the molecular level to decisively devise a verdict on the actual effects of nanoparticles on the plant system. This chapter summarizes the research conducted so far in this field and attempts at providing an outlook for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amooaghaie R, Tabatabaei F, Ali-mohammad A (2015) Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol Environ Saf 113:259

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303

    Article  CAS  Google Scholar 

  • Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell Environ 32:577

    Article  CAS  Google Scholar 

  • Bao-shan L, Shao-qi D, Chun-hui L, Li-jun F, Shu-chun Q, Min Y (2004) Effect of TMS (nano-structured silicon dioxide) on growth of Changbai larch seedlings. J Forest Res 15:138

    Article  Google Scholar 

  • Barazzouk S, Kamat PV, Hotchandani S (2005) Photoinduced electron transfer between chlorophyll a and gold nanoparticles. J Phys Chem B 109:716

    Article  CAS  PubMed  Google Scholar 

  • Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850

    Article  CAS  PubMed  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387

    Article  CAS  PubMed  Google Scholar 

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212

    Article  CAS  PubMed  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4:203

    Article  CAS  Google Scholar 

  • Beyer SR, Ullrich S, Kudera S, Gardiner AT, Cogdell RJ, Kohler J (2011) Hybrid nanostructures for enhanced light-harvesting: plasmon induced increase in fluorescence from individual photosynthetic pigment-protein complexes. Nano Lett 11:4897

    Article  CAS  PubMed  Google Scholar 

  • Bhati-Kushwaha H, Kaur A, Malik CP (2013) The synthesis and role of biogenic nanoparticles in overcoming chilling stress. Indian J Plant Sci 2:54

    Google Scholar 

  • Boghossian AA, Sen F, Gibbons BM, Sen S, Faltermeier SM, Giraldo JP, Zhang CT, Zhang J, Heller DA, Strano MS (2013) Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv Energy Mater 3:881

    Article  CAS  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of Tobacco (Nicotiana tabacum). PLoS ONE 7:1

    Article  CAS  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605

    Article  CAS  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922

    Google Scholar 

  • Carvalho RF, Piotto FA, Schmidt D, Peters LP, Monteiro CC, Azevedo RA (2011) Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress. Sci Agri 68:598

    CAS  Google Scholar 

  • Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90:1083

    Article  PubMed  CAS  Google Scholar 

  • Cossins D (2014) Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemical sensors. The scientist, news & opinion. http://www.the-scientist.com/?articles.view/articleNo/39440/title/Next-Generation–Nanoparticles-Augment-Plant-Functions/

  • Crabtree RH (1998) A new type of hydrogen bond. Science 282:2000

    Article  CAS  Google Scholar 

  • De la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161

    Google Scholar 

  • Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res 155:283

    Article  CAS  PubMed  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  PubMed  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3:e1

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nano Res 14:1

    Article  CAS  Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2010) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42

    Article  PubMed  CAS  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318

    Article  PubMed  CAS  Google Scholar 

  • Falco WF, Botero ER, Falcao EA, Santiago EF, Bagnato VS, Caires ARL (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J Photochem Photobiol A 225:65

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nano-sized titanium dioxide on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101

    Article  CAS  PubMed  Google Scholar 

  • Feizi H, Amirmoradi S, Abdollahi F, Jahedi Pour S (2013a) Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annu Rev Res Biol 3:814

    CAS  Google Scholar 

  • Feizi H, Kamali M, Jafari L, Rezvani Moghaddam P (2013b) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506

    Article  CAS  PubMed  Google Scholar 

  • Foltete AS, Masfaraud JF, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Férard JF, Cotelle S (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159:2515

    Article  CAS  PubMed  Google Scholar 

  • Gajanan G, Deuk SY, Donghee P, Sung LD (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5:157

    Article  CAS  Google Scholar 

  • Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272

    Article  CAS  PubMed  Google Scholar 

  • Gao FQ, Hong FS, Liu C, Zheng L, Su MY (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco-Rubisco activase. Biol Trace Elem Res 111:286

    Article  Google Scholar 

  • Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21:211

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63

    Article  CAS  PubMed  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effect of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645

    CAS  PubMed  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2010) Hazardous phototoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Nanoelect Optoelect 5:157

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Garay A, Pintos B, Manzanera JA, Lobo C, Villalobos N, Martin L (2014) Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea In vitro plantlets. Biol Trace Elem Res 161:143

    Article  CAS  PubMed  Google Scholar 

  • Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:1

    Google Scholar 

  • Govorov AO, Carmeli I (2007) Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett 7:620

    Article  CAS  PubMed  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481

    Article  CAS  Google Scholar 

  • Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between sliver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory–greensys, Jeju, Korea, 6–11 Oct

    Google Scholar 

  • Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pol 159:1551

    Article  CAS  Google Scholar 

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87

    Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612

    CAS  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170:346

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Yang P, Gao FQ, Liu C, Zheng L (2005a) Effect of nano-TiO2 on spectral characterization of photosystem particles from spinach. Chem Res Chin Univ 21:196

    CAS  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005b) Effect of nano-TiO2 on photo-chemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Yang F, Ma ZN, Zhou J, Liu C, Wu C, Yang P (2005c) Influences of nano-TiO2 on the chloroplast ageing of spinach under light. Biol Trace Elem Res 104:249

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Peralta-Videa Jose R, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376

    Article  CAS  PubMed  Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanotechnol 12:1

    Google Scholar 

  • Ikhtiar R, Begum P, Watari F, Fugetsu B (2013) Toxic effect of multiwalled carbon nanotubes on lettuce (Lactuca sativa). Nano Biomed 5:18

    Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobo 41:201

    Google Scholar 

  • Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremed 15:142

    Article  CAS  Google Scholar 

  • Jiang H, Liu JK, Wang JD, Lu Y, Zhang M, Yang XH, Hong DJ (2014) The biotoxicity of hydroxyapatite nanoparticles to the plant growth. J Hazard Mater 270:71

    Article  CAS  PubMed  Google Scholar 

  • Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O’Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328

    Article  CAS  PubMed  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4:49

    CAS  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49:1113

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum MUF (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Randunu RK, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape of CdSe–TiO2 architecture. J Amer Chem Soc 130:4007

    Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochem 47:51

    Article  CAS  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462

    Article  PubMed  CAS  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613

    Article  CAS  PubMed  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interf 5:7965

    Article  CAS  Google Scholar 

  • Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carriere M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys: Conf Ser 304:012057

    Google Scholar 

  • Larue C, Laurette H. Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Tot Ennviron 431:197

    Google Scholar 

  • Le V, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to terrestrial plants Phaseolus radiatus (Mung bean) and Triticum aestivum (Wheat); plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915

    Article  CAS  PubMed  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Chao L, Liang C, Hao H, Xiao W, Xiaoqing L, Fan Y, Fengqing G, Fashui H (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68

    Article  PubMed  CAS  Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-Beta radiation. Biol Trace Elem Res 121:69

    Article  PubMed  CAS  Google Scholar 

  • Li B, Tao G, Xie Y, Cai X (2012) Physiological effects under the condition of spraying nano-SiO2 onto the Indocalamus barbatus McClure leaves. J Nanjing For Univ (Natl Sci Edn) 36:161

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128

    Article  CAS  PubMed  Google Scholar 

  • Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122:168

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Castillo-Michel Botez CE, Peralta-Videa JR, Gardea- Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Zhang C, Wen J, Wu G, Tao M (2002) Research on effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168

    CAS  Google Scholar 

  • Ma L, Liu C, Qu C, Yin S, Liu J, Gao F, Hong F (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122:168

    Article  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768

    Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 1(696535). doi:10.1155/2011/696535

    Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornam Hortic Plants 3:25

    Google Scholar 

  • Marusenko Y, Shipp J, Hamilton GA, Morgan JLL, Keebaugh M, Hill H, Dutta A, Zhuo X, Upadhyay N, Hutchings J, Herckes P, Anbar AD, Shock E, Hartnett HE (2013) Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. Environ Pollut 174:150

    Article  CAS  PubMed  Google Scholar 

  • Mingyu S, Hong F, Liu C, Wu X, Liu X, Chen L, Gao F, Yang F, Li Z (2007a) Effects of nano-anatase TiO2 on absorption, distribution of light and photoreduction activities of chloroplast membrane of spinach. Biol Trace Elem Res 118:120

    Article  PubMed  CAS  Google Scholar 

  • Mingyu S, Wu X, Liu C, Qu C, Liu X, Chen L, Huang H, Hong F (2007b) Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biol Trace Elem Res 119:183

    Article  PubMed  CAS  Google Scholar 

  • Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J Roy Soc Interf 9:3514

    Article  CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: biological techniques. Academic Press, Elsevier, Cambridge, USA, vol 1, p 159

    Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519

    Article  CAS  Google Scholar 

  • Morla S, Ramachandra Rao CSV, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Bio Phys Sci B 1:328

    CAS  Google Scholar 

  • Nadtochenko VA, Nikandrov VV, Gorenberg AA, Karlova MG, Lukashev EP, Yu A, Semenov Bukharina NS, Kostrov AN, Permenova EP, Sarkisov OM (2008) Nanophotobiocatalysts based on mesoporous titanium dioxide films conjugated with enzymes and photosynthetic reaction centers of bacteria. High Energy Chem 42:591

    Article  CAS  Google Scholar 

  • Nair PM, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154

    Article  CAS  Google Scholar 

  • Nalwade AR, Neharkar SB (2013) Carbon nanotubes enhance the growth and yield of hybrid Bt cotton Var. ACH-177-2. Int J Adv Sci Tech Res 3:840

    Google Scholar 

  • Nieder JB, Bittl R, Brecht M (2010) Fluorescence studies into the effect of plasmonic interactions on protein function. Angew Chem Int Edn 49:10217

    Article  CAS  Google Scholar 

  • Noji T, Kamidaki C, Kawakami K, Shen JR, Kajino T, Fukushima Y, Sekitoh T, Itoh S (2011) Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. Langmuir 27:705

    Article  CAS  PubMed  Google Scholar 

  • Olejnik M, Krajnik B, Kowalska D, Twardowska M, Czechowski N, Hofmann E, Mackowski S (2013) Imaging of fluorescence enhancement in photosynthetic complexes coupled to silver nanowires. Appl Phys Lett 102:083703

    Article  CAS  Google Scholar 

  • Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Giri PK, Goswami DK, Perumal A (eds) Advanced nanomaterials and nanotechnology. Springer, Berlin, Heidelberg, Germany, p 301

    Google Scholar 

  • Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Preister JH, Holden PA, Gardea-Torresday J (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soy bean plants. Plant Physiol Biochem 80:128

    Article  CAS  PubMed  Google Scholar 

  • Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122

    Article  CAS  PubMed  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905

    Article  CAS  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323

    Article  CAS  PubMed  Google Scholar 

  • Racuciu M, Creanga D (2009) Biocompatible magnetic fluid nanoparticles internalized in vegetal tissues. Roman J Phys 54:115

    CAS  Google Scholar 

  • Racuciu M, Miclaus S, Creanga D (2009) The response of plant tissues to magnetic fluid and electromagnetic exposure. Rom J Biophys 19:73

    CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48

    Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415

    Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol Appl Sci 3:467

    CAS  Google Scholar 

  • Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol 1:517

    Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresday JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Lee SC, Rubenecia R, Mukerjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669

    Google Scholar 

  • Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res. J Biotechnol 3:190

    Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:61

    Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Uni Timisoara Ser Biol XVI:73

    Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225

    Article  CAS  PubMed  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Biol Sci 21:13

    Article  CAS  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MMA, Al-Whaibi MH (2012) Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249:139

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429

    Article  CAS  PubMed  Google Scholar 

  • Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Lazareva E, Onishchenko G, Feofanov A, Kirpichnikov M (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6:132

    Article  CAS  Google Scholar 

  • Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147

    Article  CAS  PubMed  Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473

    Article  CAS  PubMed  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curr Nanosci 8:902

    Article  CAS  Google Scholar 

  • Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57

    Article  CAS  PubMed  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villaseñor LM, Tripathi D, Villegas J (2013) Interaction of carbon nanotubes with mineral nutrients for the promotion of growth of tomato seedlings. Nano Stud 7:87

    Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villaseñor-Cendejas LM, Villegas J, Carreto-Montoya L, Borjas-García SE (2014) Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Sarkar S (2015) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci 5:609

    Article  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176

    Article  CAS  PubMed  Google Scholar 

  • Ursache-Oprisan M, Focanici E, Creanga D, Caltun O (2011) Sunflower chlorophyll levels after magnetic nanoparticle supply. Afr J Biotechnol 10:7092

    CAS  Google Scholar 

  • Villagarcia H, Dervishi E, Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:1

    Google Scholar 

  • Wang A, Zheng Y, Peng F (2014) Thickness-controllable silica coating of CdTe QDs by reverse microemulsion method for the application in the growth of rice. J Spectrosc (169245). doi:10.1155/2014/169245

    Google Scholar 

  • Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:126

    CAS  Google Scholar 

  • Xie Y, Li B, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing Forest Univ (Natl Sci Ed) 2:59

    Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7:1

    Article  Google Scholar 

  • Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3:80

    Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Kellerce AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci: Processes Impacts 15:260

    CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Wang Q, Zhao Y, Rui Q, Wang D (2015) Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ Toxicol Pharmacol 39:145

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Su M, Liu C, Chen L, Huang H, Wu X, Liu X, Yang F, Gao F, Hong F (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sakthi Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sheikh Mohamed, M., Sakthi Kumar, D. (2016). Effect of Nanoparticles on Plants with Regard to Physiological Attributes. In: Kole, C., Kumar, D., Khodakovskaya, M. (eds) Plant Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-42154-4_6

Download citation

Publish with us

Policies and ethics