Skip to main content

Methods of Using Nanoparticles

  • Chapter
  • First Online:
Plant Nanotechnology
  • 2020 Accesses

Abstract

Though moderate, the advances of nanotechnology in the field of plant sciences have been steadily making its mark as a technology to reckon with. Unlike in electronics, energy harvesting, or medical sciences where nanotechnology has initiated a revolution of events, the effects on plants and related disciplines have been limited, to say the least. Though reasons can be stacked up in this regard, the major concern remains as to how this technology should be employed. The ambassadors of this technology, the various nanomaterials currently available, pose a peculiar problem of the modes in which they should be allowed to interact with the plant species and their microenvironment. Problems associated with the toxicity, bioavailability, and consequential effects depend primarily on the methods employed for the administration of these nanomaterials. The mode of nanomaterial administration decides to a large extent how and where they will interact with the plants and their subsequent fate. This chapter deals with the diverse methods adopted by researchers over the years in their pursuit to develop efficient and reliable ways in which the nanomaterials can be delivered to the plant system to assess their beneficial or detrimental effects thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Salim N, Barraclough E, Burgess E, Clothier B, Deurer M, Green S, Malone L, Weir G (2011) Quantum dot transport in soil, plants, and insects. Sci Total Environ 409:3237

    Article  CAS  PubMed  Google Scholar 

  • Anderson ES, Grilloa PR, Nathalie FS, Melloa Rosab AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207

    Article  Google Scholar 

  • Anusuya S, Sathiyabama M (2015) Foliar application of β-D-Glucan nanoparticles to control rhizome rot disease of turmeric. Int J Biol Macromol 72:1205

    Article  CAS  PubMed  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253

    Article  CAS  PubMed  Google Scholar 

  • Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Gunther L, Limbach LK (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44:8718

    Article  CAS  PubMed  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development and microRNA expression of tobacco (Nicotiana tabacum). PLoS ONE 7:e34783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell NA (1990) Biology, 2nd edn. The Benjamin/Cummings Publishing Company, Redwood City

    Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144

    Article  CAS  PubMed  Google Scholar 

  • Cornelis J-T, Kruyts N, Dufey JE, Delvaux B, Opfergelt S (2012) Understanding root uptake of nutrients, toxic and polluting elements in hydroponic culture. In: Asao T (ed) Hydroponics—a standard methodology for plant biological researches. ISBN 978-953-51-0386-8, InTech, Rijeka, Croatia, p 153

    Google Scholar 

  • Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84:277

    Article  CAS  PubMed  Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez- de-Luque A, Risueño MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9: 45

    Google Scholar 

  • Cotae V, Creanga I (2005) LHC II system sensitivity to magnetic fluids. J Magn Magn Mater 289:459

    Article  CAS  Google Scholar 

  • Da Silva LC, Oliva MA, Azevedo AA, De Araujo JM (2006) Responses of restinga plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241

    Article  Google Scholar 

  • Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H (2015) Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environ Sci Technol 49:3007

    Article  CAS  PubMed  Google Scholar 

  • Das S, Wolfson BP, Tetard L, Tharjur J, Bazata J, Santra S (2015) Effect of N-acetyl cysteine coated CdS: Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies. Environ Sci NANO 2:203

    Article  CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151

    Article  CAS  PubMed  Google Scholar 

  • Ernst R, Arditti J, Healey PL (1971) Biological effects of surfactants. I. Influence on the growth of orchid seedlings. New Phytol 70:457

    Article  CAS  Google Scholar 

  • Falco WF, Botero ER, Falcao EA, Santiago EF, Bagnato VS, Caires ARL (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J of Photochem Photobiol A 225:65

    Article  CAS  Google Scholar 

  • Feichtmeier NS, Walther P, Leopold K (2015) Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res Int 22:11

    Article  Google Scholar 

  • Fernandez V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28:36

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahnoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645

    CAS  PubMed  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Banyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere 81:1253

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Melendi P, Fernandez-Pacheco R, Coronado, E. Corredor MJ, Testillano PS, Risueno MC, Marquina C, Ibarra MR, Rubiales D and Perez-De-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101: 187

    Google Scholar 

  • Gui X, He X, Ma Y, Zhang P, Li Y, Ding Y, Yang K, Li H, Rui Y, Chai Z, Zhao Y, Zhang Z (2015) Quantifying the distribution of ceria nanoparticles in cucumber roots: the influence of labeling. RSC Adv 5:4554

    Article  CAS  Google Scholar 

  • Hassana FAS, Ali EF, El-Deeb B (2014) Improvement of postharvest quality of cut rose cv. ‘First Red’ by biologically synthesized silver nanoparticles. Sci Hort 179:340

    Article  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel M, Servin AD, Peralta-Videa JR, Gardea-Torresday JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170:346

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresday JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci: Process Impacts 17:177

    CAS  Google Scholar 

  • Hong J, Peralta-Videa RJ, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376

    Article  CAS  PubMed  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food www.nanoforum.org

  • Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Won MK, Manoharan K, Kim W (2011) 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49:168

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of NP-plant interactions. Proc Natl Acad Sci USA 108:1028

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H + -ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49:1113

    Article  CAS  PubMed  Google Scholar 

  • Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222

    Article  CAS  PubMed  Google Scholar 

  • Koo Y, Wang J, Zhang Q, Zhu H, Chehab EW, Colvin VL, Alvarez PJJ, Braam J (2015) Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ Sci Technol 49:626

    Article  CAS  PubMed  Google Scholar 

  • Kordan HA (1992) Seed viability and germination: a multi-purpose experimental system. J Biol Educ 26:247

    Article  Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst plant growth metabolism. Process Biochem 47:651

    Article  CAS  Google Scholar 

  • Kumar M, Khan SS, Parakshi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613

    Article  Google Scholar 

  • Kumar M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243

    Article  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461–462:462

    Article  PubMed  Google Scholar 

  • Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607

    Article  CAS  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98

    Article  CAS  PubMed  Google Scholar 

  • Lee W-M, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Moreno ML, Rosa GD, Ahernandez-Viezcas J, Michel HC, Botez CE, Videa RP, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Moreno ML, Rosa Gdl, Hernandez-Viezcas JA, Perlta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150:243

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation and transmission of carbon nanomaterials in rice plants. Small 5:1128

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686

    CAS  PubMed  Google Scholar 

  • Liu Y, Laks P, Heiden P (2002a) Controlled release of biocides in solid wood. I. Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J Appl Polymer Sci 86:596

    Google Scholar 

  • Liu Y, Laks P, Heiden P (2002b) Controlled release of biocides in solid wood. II. Efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. J Appl Polymer Sci 86: 608

    Google Scholar 

  • Liu Y, Laks P, Heiden P (2002c) Controlled release of biocides in solid wood. III. Preparation and characterization of surfactant-free nanoparticles. J Appl Polymer Sci 86: 615

    Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Zhnag S, Luo L, Zhang J, Yang K, Christie P (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci: Nano 2:68

    CAS  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Peralta-Videa J, Bandyopadhay S, Castillo-Michel H, Hernandez-Viezcas JA, Sahi SV (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279

    Article  CAS  PubMed  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, Spengler B (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotox Environ Safe 108:335

    Article  CAS  Google Scholar 

  • Moon YS, Park ES, Kim TO, Lee HS, Lee SE (2014) SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environ Toxicol Pharmacol 38:922

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6: 132

    Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotox Environ Safe 113: 302

    Google Scholar 

  • Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211–212:427

    Article  PubMed  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology 17:372

    Article  CAS  PubMed  Google Scholar 

  • Nordmann J, Buczka S, Voss B, Hasse M, Mummenhoff K (2015) In vivo analysis of the size- and time-dependent uptake of NaYF4:Yb, Er upconversion nanocrystals by pumpkin seedlings. J Mater Chem B 3:144

    Article  CAS  Google Scholar 

  • Park H-J, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295

    Article  Google Scholar 

  • Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9:1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavel A, Trifan M, Bara II, Creanga DE, Cotae C (1999) Accumulation dynamics and some cytogenetical tests at Chelidonium majus and Papaver somniferum callus under the magnetic liquid effect. J Magn Magn Mater 201:443

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128

    Article  CAS  PubMed  Google Scholar 

  • Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1

    Article  CAS  Google Scholar 

  • Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A (2014) Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem 62:8777

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee W-J, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278

    Article  CAS  PubMed  Google Scholar 

  • Schwabe F, Schulin R, Limbach LK, Stark W, Burge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512

    Article  CAS  PubMed  Google Scholar 

  • Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, Quadtc AV, Nowack B (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics 7:466

    Article  CAS  PubMed  Google Scholar 

  • Solgi M, Kafi M, Taghavi TS, Naderi R (2009) Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers. Postharvest Biol Technol 53:155

    Article  CAS  Google Scholar 

  • Speranza A, Leopold K, Maier M, Taddei AR, Scoccianti V (2010) Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II). Environ Pollut 158:873

    Article  CAS  PubMed  Google Scholar 

  • Spurrier EC, Jackobs JA (1955) Effects of an anionic sodium sulfonate type surfactant upon plant growth. Agron J 47:462

    Article  CAS  Google Scholar 

  • Srivastava G, Das CK, Das A, Singh SK, Roy M, Kim H, Sethy N, Kumar A, Sharma RK, Singh SK, Philip D, Das M (2014) Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Adv 4:58495

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Qi L, Mu X, Wang M (2015) A fluorescent probe for sensing ferric ions in bean sprouts based on L-histidine-stabilized gold nanoclusters. Anal Methods 7:684

    Article  CAS  Google Scholar 

  • Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2:105

    Article  CAS  Google Scholar 

  • Temple RE, Hilton HW (1963) The effect of surfactants on the water solubility of herbicides and the foliar phytotoxicity of surfactants. Weeds 11:297

    Article  CAS  Google Scholar 

  • Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotox Environ Safe 104: 302

    Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295

    Article  CAS  PubMed  Google Scholar 

  • Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang C, Ma X, White JC (2012) Fullerene-enhanced accumulation of p, p′-DDE in agricultural crop species. Environ Sci Technol 46:9315

    Article  Google Scholar 

  • Torre-Roche RDL, Hawthorne J, Musante C, Xing B, Newman LA, Ma X, White JC (2013) Impact of Ag nanoparticle exposure on p, p′-DDE bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). Environ Sci Technol 47:718

    Article  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric pollution. Environ Sci Technol 44:1036

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4: 1105

    Google Scholar 

  • Wierzbicka M, Obidzinska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155

    Article  CAS  Google Scholar 

  • Yeo M-K, Nam D-H (2013) Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: a comparison of TiO2 nanoparticles and nanotubes. Environ Pollut 178:166

    Article  CAS  PubMed  Google Scholar 

  • Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Peratla-Videa JR, Peng B, Bandyopadhyay S, Corral-Diaz B, Osuna P, Montes MO, Keller AA, Gardea-Toreesday JL (2014a) Alginate modifies the physiological impact of CeO2 nanoparticles in corn seedlings cultivated in soil. J Environ Sci 26:382

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Guardea M, Gardea-Torresdey JL (2014b) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Hong J, Majumdar S, Niu G, Duarte-Guardea M, Peralta-Videa JR, Gardea-Torresday JL (2015a) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol 49:2921

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Wang Q, Zhao Y, Ruia Q, Wang D (2015b) Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ Toxicol Pharmacol 39:145

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014) Uptake and accumulation of CuO nanoparticles and CdS/ZnS quantum dot nanoparticles by Schoenoplectus tabernaemontani in hydroponic mesocosms. Ecol Eng 70:114

    Article  Google Scholar 

  • Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Stuckey D, Ng WJ, Tan SK (2015) Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z-J, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR, Rotello VM, Xing B, Vachet RW (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sakthi Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sheikh Mohamed, M., Sakthi Kumar, D. (2016). Methods of Using Nanoparticles. In: Kole, C., Kumar, D., Khodakovskaya, M. (eds) Plant Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-42154-4_4

Download citation

Publish with us

Policies and ethics