Skip to main content

Continuous Time Dynamical System and Statistical Independence

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9786))

Included in the following conference series:

  • 1196 Accesses

Abstract

Dynamical systems can give information and can be used in applications in various domains. It is important to know the type of information which will be extracted. In an era when everybody is speaking and is producing information that can be referred as big data, here, the way to extract relevant information by sampling a signal is investigated. Each state variable of a dynamical system is sampled with a specific frequency in order to obtain data sets which are statistical independent. The system can provide numbers for random generators and the sequence obtained can be easily reproduced. These type of generators can be used in cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badea, B., Vlad, A.: Revealing statistical independence of two experimental data sets: an improvement on spearman’s algorithm. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 1166–1176. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Baptista, M.S.: Cryptography with chaos. Phys. Lett. A 240(1–2), 50–54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, G., Han, B.: An audio scrambling degree measure based on information criteria. In: Proceedings of the 2nd International Signal Processing Systems (ICSPS) Conference, vol. 1 (2010)

    Google Scholar 

  4. Dogaru, I., Dogaru, R., Damian, C.: Fpga implementation of chaotic cellular automaton with binary synchronization property. In: Proceedings of the 8th International Communications (COMM) Conference, pp. 45–48 (2010)

    Google Scholar 

  5. Frunzete, M., Luca, A., Vlad, A.: On the statistical independence in the context of the rössler map. In: 3rd Chaotic Modeling and Simulation International Conference (CHAOS2010), Chania, Greece (2010). http://cmsim.net/sitebuildercontent/sitebuilderfiles/

  6. Frunzete, M., Barbot, J.-P., Letellier, C.: Influence of the singular manifold of nonobservable states in reconstructing chaotic attractors. Phys. Rev. E 86(2), 26205 (2012)

    Article  Google Scholar 

  7. Frunzete, M., Luca, A., Vlad, A., Barbot, J.-P.: Statistical behaviour of discrete-time rössler system with time varying delay. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part I. LNCS, vol. 6782, pp. 706–720. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Frunzete, M., Luca, A., Vlad, A., Barbot, J.-P.: Observability and singularity in the context of roessler map. Univ. “Politehnica” Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 74(1), 83–92 (2012)

    MathSciNet  MATH  Google Scholar 

  9. García, J.E., González-López, V.A.: Independence tests for continuous random variables based on the longest increasing subsequence. J. Multivar. Anal. 127, 126–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grigoras, V., Tataru, V., Grigoras, C.: Chaos modulation communication channel: A case study. In: Proceedings of International Symposium Signals, Circuits and Systems ISSCS 2009, pp. 1–4 (2009)

    Google Scholar 

  11. Hodea, O., Vlad, A.: Logistic map sensitivity to control parameter and its implications in the statistical behaviour. In: 2013 International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–4, July 2013

    Google Scholar 

  12. Hodea, O., Vlad, A., Datcu, O.: Evaluating the sampling distance to achieve independently and identically distributed data from generalized h énon map. In: 2011 10th International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–4, June 2011

    Google Scholar 

  13. Ivan, C., Serbanescu, A.: Applications of nonlinear time-series analysis in unstable periodic orbits identification - chaos control in buck converter. In: Proceedings of International Symposium Signals, Circuits and Systems ISSCS 2009, pp. 1–4 (2009)

    Google Scholar 

  14. Edward, N.: Lorenz.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  15. Peinke, J., Parisi, J., Rössler, O.E., Stoop, R.: Encounter with chaos: self-organized hierarchical complexity in semiconductor experiments. Springer Science & Business Media (2012)

    Google Scholar 

  16. Perruquetti, W., Barbot, J.-P.: Chaos in automatic control. CRC Press, Taylor & Francis Group (2006)

    Google Scholar 

  17. Poincaré, H., Goroff, D.: New Methods of Celestial Mechanics. AIP Press, Williston (1903)

    Google Scholar 

  18. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2–3), 155–157 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Smirnov, N.: Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 19(2), 279–281 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  20. Soofi, A.S., Cao, L.: Modelling and forecasting financial data: techniques of nonlinear dynamics, vol. 2. Springer Science & Business Media (2012)

    Google Scholar 

  21. Letellier, C., Aguirre, L.A.: Interplay between synchronization, observability, and dynamics. Phys. Rev. E 82(1), 016204 (2010)

    Article  MathSciNet  Google Scholar 

  22. Vlad, A., Luca, A., Frunzete, M.: Computational measurements of the transient time and of the sampling distance that enables statistical independence in the logistic map. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part II. LNCS, vol. 5593, pp. 703–718. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Lei, Y., Barbot, J.-P., Zheng, G., Sun, H.: Compressive sensing with chaotic sequence. IEEE Signal Process. Lett. 17(8), 731–734 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant of the Romanian Space Agency, Space Technology and Advanced Research (STAR) Programme, project number 75/29.11.2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madalin Frunzete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Frunzete, M., Perisoara, L., Barbot, JP. (2016). Continuous Time Dynamical System and Statistical Independence. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42085-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42084-4

  • Online ISBN: 978-3-319-42085-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics